Лабораторный блок питания своими руками. Самодельный блок питания: схемы, инструкции Самодельный лабораторный блок питания своими руками

21.01.2024

Я немного увлекся гальванопластикой (про это еще расскажу), и для нее мне понадобился новый блок питания. Требования к нему примерно такие – 10А выходного тока при максимальном напряжении порядка 5В. Конечно-же, взгляд сразу упал на кучу ненужных компьютерных блоков питания.

Конечно, идея переделать компьютерный блок питания в лабораторный не нова. В интернетах я нашел несколько конструкций, но решил, что еще одна – не помешает. В процессе переделки, я сделал просто дофига ошибок, поэтому, если решитесь сделать и себе такой блок питания, учитывайте их, и у вас получится лучше!

Внимание! Несмотря на то, что складывается впечатление, что этот проект — для новичков, ничего подобного – проект довольно сложный! Имейте ввиду.

Конструкция

Мощность того блока питания, который я вытащил из-под кровати – 250Вт. Если я сделаю БП 5В/10А, то пропадает драгоценная моща! Не дело! Подымем напряжение до 25В, может сгодится, к примеру, для зарядки аккумуляторов – там нужно напряжение порядка 15В.

Для дальнейших действий нужно сначала найти схему на исходный блок. В принципе, все схемы БП известны и гуглятся. Что именно нужно гуглить – написано на плате.

Мне мою схему подкинул друг. Вот она. (Откроется в новом окне)

Да-да, нам придется лазить во всех этих кишках. В этом нам поможет даташит на TL494

Итак, первое, что нам нужно сделать – проверить, какое максимальное напряжение может выдать блок питания по шинам +12 и +5 вольт. Для этого удаляем предусмотрительно помещенную производителем перемычку обратной связи.

Резисторы R49-R51 подтянут плюсовой вход компаратора к земле. И, вуаля, у нас на выходе – максимальное напряжение.

Пытаемся стартовать блок питания. Ага, без компьютера не стартует. Дело в том, что его нужно включить, соединив вывод PS_ON с землей. PS_ON обычно подписан на плате, и он нам еще понадобится, поэтому не будем его вырезать. А вот непонятную схему на Q10, Q9 и Q8 отключим – она использует выходные напряжение и, после их вырезания не даст нашему БП запуститься. Мягкий старт у нас будет работать на резисторах R59, R60 и конденсаторе C28.

Итак, бп запустился. Появились выходные максимальные напряжения.

Внимание! Выходные напряжения – больше тех, на которые рассчитаны выходные конденсаторы, и, поэтому, конденсаторы могут взорваться. Я хотел поменять конденсаторы, поэтому мне их было не жалко, а вот глаза не поменяешь. Аккуратно!

Итак, подучилось по +12В – 24В, а по +5В – 9.6В. Похоже, запас по напряжению ровно в 2 раза. Ну и прекрасно! Ограничим выходное напряжение нашего БП на уровне 20В, а выходной ток – на уровне 10А. Таким образом, получаем максимум 200Вт мощи.

С параметрами, вроде бы, определились.

Теперь нужно сделать управляющую электронику. Жестяной корпус БП меня не удовлетворил(и, как оказалось, зря) – он так и норовит поцарапать что-то, да еще и соединен с землей (это помешает мерить ток дешевыми операционниками).

В качестве корпуса, я выбрал Z-2W, конторы Maszczyk

Я измерил излучаемый блоком питания шум – он оказался вполне небольшим, так что, вполне можно использовать пластиковый корпус.

После корпуса я сел за Corel Draw и прикинул, как должна выглядеть передняя панель:

Электроника

Я решил разбить электронику на две части – фальш-панель и управляющая электроника. Причина для такого разбиения – банально не хватило места на лицевой панели, чтобы вместить еще и управляющую электронику.

В качестве основного источника питания для своей электроники я выбрал standby источник. Было замечено, что если его хорошенько нагрузить, то он перестает пищать, поэтому идеальными оказались 7-сегментные индикаторы — и блок питания подгрузят и напряжение с током покажут.

Фальш-панель :

На ней индикаторы, потенциометры, светодиод. Для того, чтобы не тащить кучу проводов к 7-сегментникам, я использовал сдвиговые регистры 74AC164. Почему AC, а не HC ? У HC максимальный суммарный ток всех ножек – 50мА, а у AC – по 25мА на каждую ножку. Ток индикаторов я выбрал 20мА, тоесть 74HC164 точно бы не хватило по току.

Управляющая электроника – тут все слегка посложнее.

В процессе составления схемы, я конкретно налажал, за что и поплатился кучей перемычек на плате. Вам-же предоставляется исправленная схема.

Если кратко, то – U1A – диф. усилитель тока. При максимальном тока, на выходе получается 2.56В, что совпадает с опорным у АЦП контроллера.

U1B – собственно токовый компаратор – если ток превышает порог, заданный резисторами, tl494 “затыкается”

U2A – индикатор того, что БП работает в режиме ограничения тока.

U2B – компаратор напряжения.

U3A, U3B – повторители с переменников. Дело в том, что переменники относительно высокоомные, да еще и сопротивление их меняется. Это значительно усложнит компенсацию обратной связи. А вот если их привести к одному сопротивлению, то все становится значительно проще.

С контроллером все понятно – это банальная атмега8, да еще и в дипе, которая лежала в загашнике. Прошивка относительно простая, и сделана между паяниями левой лапой. Но, нем не менее, рабочая.

Контроллер работает на 8МГц от RC генератора (нужно поставить соответствующие фюзы)

По хорошему, измерение тока нужно перенести на “высокую сторону”, тогда можно будет мереть напряжение непосредственно на нагрузке. В этой схеме при больших токах в измеренном напряжении будет ошибка до 200мВ. Я слажал и каюсь. Надеюсь, вы не повторите моих ошибок.

Переделка выходной части

Выбрасываем все лишнее. Схема получается такой (кликабельно):

Синфазный дроссель я немного переделал – соединил последовательно обмотку которая для 12В и две обмотки для 5в, в итоге получилось около 100мкГн, что дофига. Еще я заменил конденсатор тремя включенными параллельно 1000мкФ/25В

После модификации, выход выглядит так:

Настройка

Запускаем. Офигиваем от количества шума!

300мВ! Пачки, похоже на возбуждение обратной связи. Тормозим ОС до предела, пачки не исчезают. Значит, дело не в ОС

Долго тыкавшись, я нашел, что причина такого шума – провод! О_о Простой двужильный двухметровый провод! Если подключить осциллограф до него, или включить конденсатор прямо на щуп осциллографа, пульсации уменьшаются до 20мВ! Это явление я толком не могу объяснить. Может, кто-то из вас, поделится? Теперь, понятно что делать – в питающейся схеме должен быть конденсатор, и конденсатор нужно повесить непосредственно на клеммы БП.

Кстати, насчет Y – конденсаторов. Китайцы сэкономили на них и не поставили. Итак, выходное напряжение без Y-конденсаторов

А теперь – с Y конденсатором:

Лучше? Несомненно! Более того, после установки Y – конденсаторов сразу-же перестал глючить измеритель тока!

Еще я поставил X2 – конденсатор, чтобы хоть как-то поменьше хлама в сети было. К сожалению, похожего синфазного дросселя у меня нет, но как только найду – сразу поставлю.

Обратная связь.

Про нее я написал , читайте

Охлаждение

Вот тут пришлось повозиться! После нескольких секунд под полной нагрузкой вопрос о необходимости активного охлаждения был снят. Больше всех грелась выходная диодная сборка.

В сборке стоят обычные диоды, я думал заменить их диодами Шоттки. Но обратное напряжение на этих диодах оказалось порядка 100 вольт, а как известно, высоковольтные диоды шоттки не намного лучше обычных диодов.

Поэтому, пришлось прикрутить кучу дополнительных радиаторов (сколько влезло) и организовать активное охлаждение.

Откуда брать питание для вентилятора? Вот и я долго думал, но таки придумал. tl494 питается от источника напряжением 25В. Берем его (с перемычки J3 на схеме) и понижаем стабилизатором 7812.

Для продуваемости пришлось вырезать крышку под 120мм вентилятор, и прицепить соответствующую решетку, а сам вентилятор поставить на 80мм. Единственное место, где это можно было сделать – это верхняя крышка, а поэтому конструкция получилась очень плохая – с верху может упасть какая-то металлическая хрень и замкнуть внутренние цепи блока питания. Ставлю себе 2 балла. Не стоило уходить от корпуса блока питания! Не повторяйте моих ошибок!

Вентилятор никак не крепится. Его просто прижимает верхняя крышка. Так вот хорошо с размерами я попал.

Результаты

Итог. Итак, этот блок питания работает уже неделю, и можно сказать, что он довольно надежен. К моему удивлению, он очень слабо излучает, и это хорошо!

Я попытался описать подводные камни, на которые сам нарвался. Надеюсь, вы не повторите их! Удачи!

Всем доброго времени суток! Сегодня я хочу представить вашему вниманию Лабораторный Блок Питания (ЛБП). Я думаю каждый начинающий радиолюбитель сталкивался с проблемой получения необходимого напряжения для той или иной своей самоделки, ведь каждое устройство требует разного напряжения. С такой проблемой столкнулся на днях и я. Надо было за питать самодельный усилитель, а необходимого напряжения под рукой не оказалось. Ну это не первая моя самоделка с которой у меня возникли проблемы. Вот я принялся за работу.

И так, нам понадобиться:
-Корпус (можно купить готовый, а можно как я взять его из компьютерного блока питания)
-Трансформатор с выходным напряжениям до 30В и током до 1,5 ампера (транс я взял по мощнее так как 1,5А для меня маловато)
-Простой набор радиодеталей:
-Диодный мост на 3А.
-Конденсатор электролитический 50В 2200мкф.
-Конденсатор керамический на 0.1мкф (чтобы сильнее сгладить пульсации).
-Микросхема LM317 (в моем случае 2 таких микросхемы).
-Резистор переменный на 4.7кОм.
-Резистор на 200ом 0.5Ват.
-Конденсатор керамический на 1мкф.
-Старый аналоговый тестер (я использовал в качестве вольтметра).
-Текстолит и хлор железа (для травления платы).
-Клеммы.
-Провода.
-Паяльные принадлежности.
Начинаем! Корпус я взял из компьютерного Блока Питания. Разбираем его и вытаскиваем внутренности и отпиливаем переднюю панель (ту с которой выходят провода) как на фото.

Отрезаем крепления платы с одной стороны и выгибаем их таким образом чтобы потом закрепить на них сделанную нами переднюю панель.


Выбираем место для трансформатора, сверлим в нижней части корпуса отверстия и закрепляем трансформатор.

Теперь приступим к собиранию платы для начала ее нужно вытравить. Переносим заранее распечатанную плату на текстолит.

И кидаем в хлорное на 10-20мин. После того как вытравили сверлим отверстия и лудим плату.


Впаиваем элементы согласно схеме.



Берем провода, собираем схему и пакуем все в корпус. ВАЖНО! (микросхему нужно установить на радиатор так как при больших нагрузках она сильно греется и может выйти из строя). Вот что получилось.

Теперь нужно получить вольтметр из старого тестера. Для этого просто отрезаем сам индикатор от пластикового корпуса.

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

На разработку этого блока питания потребовался один день, за этот же день он был реализован, и весь процесс был снят на видео камеру. Несколько слов о схеме. Это стабилизированный блок питания с регулировкой выходного напряжения и ограничением тока. Схематические особенности позволяют скинуть минимальную грань выходного напряжения до 0,6 Вольт, а минимальных выходной ток в районе 10мА.


Не смотря на простату конструкции, данному блоку питания уступают даже хорошие лабораторные блоки питания со стоимостью 5-6 тысяч рублей!. Максимальный выходной ток схемы 14Ампер, максимальное выходное напряжение до 40 Вольт - больше не стоит.
Довольно плавное ограничение тока и регулировка напряжения. Блок имеет также фиксированную защиту от коротких замыканий, к стати - ток защиту тоже можно выставить (этой функции лишены почти все промышленные образцы) к примеру, если вам нужно, чтобы защита срабатывала при токах до 1 Ампер - то всего лишь нужно настроить такой ток помощью регулятора настройки тока срабатывания. Максимальный ток - 14Ампер, но и это не предел.

В качестве датчика тока задействовал несколько резисторов 5 ватт 0,39Ом подключенных параллельно, но их номинал можно менять, исходя от нужного тока защиты, к примеру - если планируете блок питания с максимальным током не более 1 Ампер, то номинал этого резистора в районе 1Ом при мощности 3Ватт.
При коротких замыканиях падение напряжения на датчике тока достаточно для срабатывания транзистора BD140, При его открывании срабатывает также нижний транзистор - BD139, через открытый переход которого поступает питание на обмотку реле, в следствии чего, реле срабатывает и размыкается рабочий контакт (на выходе схемы). Схема в таком состоянии может находится сколько угодно времени. Вместе с защитой срабатывает также индикатор защиты. Для того, чтобы снять блок с защиты нужно нажать и опустить кнопку S2 по схеме.
Реле защиты с катушкой 24 Вольт с допустимым током 16-20 и более Ампер.
Силовые ключи в моем случае любимые КТ8101 установленные на теплоотвод (дополнительно изолировать транзисторы не нужно, поскольку коллекторы ключей общие). Заменить транзисторы можно на 2SC5200 - полный импортный аналог или на КТ819 с индексом ГМ (железные), при желании также можно задействовать - КТ803, КТ808, КТ805 (в железных корпусах), но максимальный ток отдачи будет не более 8-10 Ампер. Если блок нужен с током не более 5 Ампер, то можно убрать один из силовых транзисторов.
Маломощные транзисторы типа BD139 можно заменить на полный аналог - KT815Г,(можно также - KT817, 805), BD140 - на КТ816Г (можно также КТ814).
Маломощные транзисторы устанавливать на теплоотводы не нужно.

По сути - представлена только схема управления(регулировки) и защиты (рабочий узел). В качестве блока питания я задействовал доработанные компьютерные блоки питания (последовательно соединенные), но можно любой сетевой трансформатор с мощностью 300-400 ватт, во вторичной обмоткой 30-40 Вольт, ток обмотки 10-15 Ампер - это в идеале, но можно трансформаторы и меньшей мощности.
Диодный мост - любой, с током не менее 15 Ампер, напряжение не важно. Можно использовать готовые мосты, стоят они не более 100 руб.
За 2 месяца было собрано и продано свыше 10 таких блоков питания - никаких жалоб. Для себя собрал точно такой БП, и как только я его не мучил - неубиваемый, мощный и очень удобный для любых дел.
Если есть желающие стать владельцем такого БП, то могу сделать под заказ, свяжитесь со мной по адресу

С уважением - АКА КАСЬЯН


Двух-полярный лабораторный блок питания своими руками.

Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.

За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.

Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности - придётся собирать две одинаковые.

Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания (в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле. Можно поставить и КТ827А, этот транзистор составной и в этом случае надобность в транзисторе Q2 отпадает и его, а так же резистор R16 можно не ставить и базу КТ827А подключить на место базы Q2. В принципе можно транзистор и резистор и не удалять (при замене на КТ827А), всё работает и с ними и не возбуждается. Я сразу поставил наши КТ827А и не удалял транзистор Q2 (схему не менял), а заменил его на BD139 (КТ815), теперь и он не греется, правда вместе с ним надо заменить R13 на 33к. Выпрямительные диоды у меня с запасом по мощности. В исходной схеме стоят диоды на ток 3 А, желательно поставить на 5 А (можно и поболее), запас лишним никогда не будет.

Блок питания;

R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм ) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139 )
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А и не ставить Q2, R16)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод.

Индикатор;

Резистор = 10K триммер - 2 шт.
Резистор = 3K3 триммер - 3 шт.
Резистор = 100кОм 1/4W
Резистор = 51кОм 1/4W - 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W - 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W - 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 - 3 шт.
Диод = 1N4001 - 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 - 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр - 5 шт.
Операционный усилитель МСР502 - 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)



В качестве измерителя (индикаторов), после поисков в просторах "инета", было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.

За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.







Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и "положил" на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.

Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.



Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.

Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.



Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.

Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.

День как говорится, закончился для меня очень удачно.



Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо - тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.

Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.

Трансформатор с вторичной обмоткой со средней точкой не подойдёт!

Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.

Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.

Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.



Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.



Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь C@at с сайта c2.at.ua. За основу моего индикатора, была выбрана та схема, где на одном дисплее реализуются два вольтметра и два амперметра.

Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.

Долго мне пришлось повозиться, прежде чем на появились положительные результаты.

И вот наконец, на основе наработанной другим человеком схемы, нескольких дней "плясок с бубном", работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.

Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).

Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр - все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.

Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.



В печатке которую я вытравил себе - немного "накосячил" с диодным мостом (видно на фото платы), но переделывать было уже лень - вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.

Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.



Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.

Для черчения, я в основном использую программу "Компас 3D". Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в "Компасе" начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса - некоторая доработка передней панели в фотошоп.



Я уже говорил, что попросил автора схемы и прошивки - немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно).У меня это теперь выглядит вот так.


Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).


Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп - должна работать.

P.S. Сам ещё её не собирал.

При испытании собранного БП - решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.

Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.

Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.

В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.

Удачи в сборке!

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их на форуме.

Архив для статьи

© ebergardt.ru, 2024
Строим вместе