Схемы присоединения потребителей к тепловым сетям. Принципиальная схема ИТП. Схемы теплоснабжения и их конструктивные особенности Магистральные трубопроводы тс

24.02.2024

О значении теплового пункта в общей системе теплоснабжения много говорить не надо. Тепловые схемы тепловых узлов задействованы как в сети, и так и в системе внутреннего потребления.

Понятие о тепловом пункте

Экономичность использования и уровня подачи тепла к потребителю напрямую зависит от правильности функционирования оборудования.

По сути, тепловой пункт представляет собой юридическую границу, что само по себе предполагает обустройство его набором контрольно-измерительной техники. Благодаря такой внутренней начинке определение взаимной ответственности сторон становится более доступным. Но прежде чем разобраться с этим, необходимо понять, как функционируют тепловые схемы тепловых узлов и для чего их читать.

Как определить схему теплового узла

При определении схемы и оборудования теплового пункта опираются на технические характеристики местной системы теплопотребления, внешней ветки сети, режима работы систем и их источников.

В этом разделе предстоит ознакомиться с графиками расхода теплоносителя - тепловой схемой теплового узла.

Подробное рассмотрение позволит понять, как производится подключение к общему коллектору, давление внутри сети и относительно теплоносителя, показатели которых напрямую зависят от расхода тепла.

Важно! В случае присоединения теплового узла не к коллектору, а к тепловой сети расход теплоносителя одной ветки неизбежно отражается на расходе другой.

Разбор схемы в деталях

На рисунке изображены два типа подключений: а - в случае подключения потребителей непосредственно к коллектору; б - при присоединении к ветке тепловой сети.

Чертеж отражает графические изменения расходов теплоносителя при наступлении таких обстоятельств:

А - при подключении систем отопления и к коллекторам теплоисточника по отдельности.

Б - при врезке тех же систем к наружной Интересно, что присоединение в таком случае отличается высокими показателями потери давления в системе.

Рассматривая первый вариант, следует отметить, что показатели суммарного расхода теплоносителя возрастают синхронно с расходом на снабжение горячей водой (в режиме І, ІІ, ІІІ), в то время как во втором, хоть рост расхода теплового узла и имеет место быть, вместе с ним показатели расхода на отопление автоматически понижаются.

Исходя из описанных особенностей тепловой схемы теплового узла, можно сделать вывод, что в результате суммарного расхода теплоносителя, рассмотренного в первом варианте, при его применении на практике составляет около 80 % расхода при применении второго прототипа схемы.

Место схемы в проектировании

Проектируя схему теплового узла отопления в жилом микрорайоне, при условии, что система теплоснабжения закрытая, уделите особое внимание выбору схемы соединения подогревателей горячего водоснабжения с сетью. Выбранный проект будет определять расчетные расходы теплоносителей, функции и режимы регулирования, прочее.

Выбор схемы теплового узла отопления в первую очередь определяется установленным тепловым режимом сети. Если сеть функционирует по отопительному графику, то подбор чертежа производится исходя из технико-экономического расчета. В таком случае параллельную и смешанную схемы тепловых узлов отопления сравнивают.

Особенности оборудования теплового пункта

Чтобы сеть теплоснабжения дома исправно функционировала, на пункты отопления дополнительно устанавливают:

  • задвижки и вентили;
  • специальные фильтры, улавливающие частицы грязи;
  • контрольные и статистические приборы: термостаты, манометры, расходомеры;
  • вспомогательные или резервные насосы.

Условные обозначения схем и как их читать

На рисунке выше изображена принципиальная схема теплового узла с подробным описанием всех составляющих элементов.

Номер элемента

Условное обозначение

Трехходовой кран

Задвижка

Кран пробковый

Грязевик

Клапан обратный

Шайба дроссельная

V-образный штуцер для термометра

Термометр

Манометр

Элеватор

Тепломер

Регулятор расхода воды

Регулятор подпара

Вентили в системе

Линия обводки

Обозначения на схемах тепловых узлов помогают разобраться в функционировании узла путем изучения схемы.

Инженеры, ориентируясь на чертежи, могут предположить, где возникает поломка в сети при наблюдающихся неполадках, и быстро ее устранить. Схемы тепловых узлов пригодятся и в том случае, если вы занимаетесь проектированием нового дома. Такие расчеты обязательно входят в пакет проектной документации, ведь без них не выполнить монтаж системы и разводку по всему дому.

Информация о том, что такое чертеж тепловой системы и как его принимать на практике, пригодится каждому, кто хотя бы раз в своей жизни сталкивался с отопительными или водонагревающими приборами.

Надеемся, приведенный в статье материал поможет разобраться с основными понятиями, понять, как определить на схеме основные узлы и точки обозначения принципиальных элементов.

Билет №1

1. Источниками энергии, в том числе и тепловой, могут служить вещества, энергетический потенциал которых достаточен для последующего преобразования их энергии в другие ее виды с целью последующего целенаправ­ленного использования. Энергетический потенциал веществ является параметром, позволяющим оценить прин­ципиальную возможность и целесообразность их использования как источников энергии, и выражается в едини­цах энергии: джоулях (Дж) или киловатт (тепловых)-часах [кВт(тепл.) -ч] *.Все источники энергии условно делят на первичные и вторичные (рис. 1.1). Первичными источниками энергии называют вещества, энергетический потенциал которых является следствием природных процесов и не зависит от деятельности человека. К первичным источникам энергии относятся: ископаемые горючие и расщепляющиеся вещества, нагретые до высокой температуры воды недр Земли (термальные воды), Солнце, ветер, реки, моря, океаны и др. Вторичными источниками энергии называют вещества, обладающие определенным энергетическим потенциалом и являющиеся побочными продуктами деятельности человека; например, отработавшие горючие органические вещества, городские отходы, горячий отработанный теплоноситель промышленных производств (газ, вода, пар), нагретые вентиляционные выбросы, отходы сельскохозяйственного производства и др.Первичные источники энергии условно разделяют на невозобновляющиеся, возобновляющиеся и неисчерпае­мые. К ^возобновляющимся первичным источникам энергии относят ископаемые горючие вещества: уголь, нефть, газ, сланец, торф и ископаемые расщепляющиеся вещества: уран и торий. К возобновляющимся первичным источникам энергии относят все возможные источники энергии, являющиеся продуктами непрерывной деятельности Солнца и природных процессов на поверхности Земли: ветер, водные ресурсы, океан, растительные продукты биологической деятельности на Земле (древесину и другие растительные вещества), а также и Солнце. К практически неисчерпаемым первичным источникам энергии относят термальные воды Земли и вещества, которые могут быть источниками получения термоядерной энергии.Ресурсы первичных источников энергии на Земле оцениваются общими запасами каждого источника и его энергетическим потенциалом, т. е. количеством энергии, которая может быть выделена из единицы его массы. Чем выше энергетический потенциал вещества, тем выше эффективность его использования как первичного источника энергии и, как правило, тем большее распространение оно получило при производстве энергии. Так, например, нефть имеет энергетический потенциал, равный 40 000-43 000 МДж на 1 т массы, а природный и попутный газы - от 47 210 до 50 650 МДж на 1 т массы, что в сочетании с их относительно невысокой стоимостью добычи сделало возможным их быстрое распространение в 1960-1970-х годах как первичных источников тепловой энергии.Использование ряда первичных источников энергии до последнего времени сдерживалось либо сложностью тех­нологии преобразования их энергии в тепловую энергию (например, расщепляющиеся вещества), либо относи­тельно низким энергетическим потенциалом первичного источника энергии, что требует больших затрат на полу­чение тепловой энергии нужного потенциала (например, использование солнечной энергии, энергии ветра и др.). Развитие промышленности и научно-производственного потенциала стран мира привело к созданию и реализа­ции процессов производства тепловой энергии из ранее неразрабатывавшихся первичных источников энергии, в том числе к созданию атомных станций теплоснабжения, солнечных генераторов теплоты для теплоснабжения зданий, теплогенераторов на геотермальной энергии.



Принципиальная схема тэс


2.Тепловой пункт (ТП) - комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.Основными задачами ТП являются:

Преобразование вида теплоносителя

Контроль и регулирование параметров теплоносителя

Распределение теплоносителя по системам теплопотребления

Отключение систем теплопотребления

Защита систем теплопотребления от аварийного повышения параметров теплоносителя

Учет расходов теплоносителя и тепла

Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Билет №3

Схемы присоединения потребителей к тепловым сетям. Принципиальная схема ИТП

Различают зависимые и независимые схемы присоединения систем отопления:

Независимая (закрытая) схема подключения - схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (перегретая вода), поступающий из тепловой сети, проходит через теплообменник, установленный на тепловом пункте потребителя, где нагревает вторичный теплоноситель, используемый в дальнейшем в системе теплопотребления

Зависимая (открытая) схема подключения - схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (вода) из тепловой сети поступает непосредственно в систему теплопотребления.

Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.

2. Принцип действия МГД-генератора. Схема ТЭС с МГД.

Магнитогидродинамический генератор, МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Также как и в обычных машинных генераторах, принцип работы МГД-генератора основан на явлении электромагнитной индукции, то есть на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. Но, в отличие от машинных генераторов, в МГД-генераторе проводником является само рабочее тело, в котором при движении поперёк магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

Рабочим телом МГД-генератора могут служить следующие среды:

· Электролиты

· Жидкие металлы

· Плазма (ионизированный газ)

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты), в настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы, отклоняющиеся в магнитном поле от траектории, по которой газ двигался бы в отсутствие поля. В таком генераторе может наблюдаться дополнительное электрическое поле, так называемое поле Холла , которое объясняется смещением заряженных частиц между соударениями в сильном магнитном поле в плоскости, перпендикулярной магнитному полю.

Электростанции с магнитогидродинамическими генераторами (МГД-генераторами) . МГД - генераторы планируется сооружать в качестве надстройки к станции типа КЭС. Они используют тепловые потенциалы в 2500-3000 К, недоступные для обычных котлов.

Принципиальная схема ТЭС с МГД - установкой показана на рисунке. Газообразные продукты сгорания топлива, в которые вводится легкоионизируемая присадка (например, К 2 СО 3), направляются в МГД - канал, пронизанный магнитным полем большой напряженности. Кинетическая энергия ионизированных газов в канале преобразуется в электрическую энергию постоянного тока, который, в свою очередь, преобразуется в трехфазный переменный ток и направляется в энергосистему потребителям.

Принципиальная схема КЭС с МГД-генератором:
1 - камера сгорания; 2 – МГД - канал; 3 - магнитная система; 4 - воздухоподогреватель,
5 - парогенератор (котел); 6 - паровые турбины; 7 - компрессор;
8 - конденсатный (питательный) насос.

Билет №4

1.Классификация систем теплоснабжения

Принципиальные схемы систем теплоснабжения по способу подключения к ним систем отопления

По месту выработки теплоты системы теплоснабжения делятся на:

· Централизованные (источник производства тепловой энергии работает на теплоснабжение группы зданий и связан транспортными устройствами с приборами потребления тепла);

· Местные (потребитель и источник теплоснабжения находятся в одном помещении или в непосредственной близости).

По роду теплоносителя в системе:

· Водяные;

· Паровые.

По способу подключения системы отопления к системе теплоснабжения:

· зависимые (теплоноситель, нагреваемый в теплогенераторе и транспортируемый по тепловым сетям, поступает непосредственно в теплопотребляющие приборы);

· независимые (теплоноситель, циркулирующий по тепловым сетям, в теплообменнике нагревает теплоноситель, циркулирующий в системе отопления).

По способу присоединения системы горячего водоснабжения к системе теплоснабжения:

· закрытая (вода на горячее водоснабжение забирается из водопровода и нагревается в теплообменнике сетевой водой);

· Открытая (вода на горячее водоснабжение забирается непосредственно из тепловой сети).

В зависимости от числа потребителей, их потребностей в тепловой энергии, а также требований к качеству и бесперебойности теплоснабжения для определенных категорий абонентов тепловые сети выполняются радиальными (тупиковыми) или кольцевыми.

Тупиковая схема (рисунок) является наиболее распространенной. Она применяется при обеспечении тепловой энергией города, квартала или поселка от одного источника – теплоэлектроцентрали или котельной. По мере удаления магистрали от источника уменьшаются диаметры теплопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях в соответствии со снижением тепловой нагрузки. Для этой схемы характерно то, что при аварии магистрали абоненты, подключенные к тепловой сети после места аварии, не обеспечиваются тепловой энергией.

Для повышения надежности обеспечения потребителей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, если мощность магистралей 350 МВт и более. В этом случае диаметр магистралей, как правило, 700 мм и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного теплоснабжения потребителей. В аварийных условиях допускается частичное снижение подачи тепловой энергии. Например, согласно Нормам проектирования, перемычки рассчитывают на обеспечение 70 %-ной суммарной тепловой нагрузки (максимального часового расхода на отопление и вентиляцию и среднечасового на горячее водоснабжение).

В развивающихся районах города резервирующие перемычки предусматривают между смежными магистралями независимо от тепловой мощности, но в зависимости от очередности развития. Перемычки предусматривают также и между магистралями в тупиковых схемах при теплоснабжении района от нескольких источников теплоты (ТЭЦ, районных и квартальных котельных 4), что повышает надежность теплоснабжения. Кроме того, в летний период при работе одной или двух котельных на нормальном режиме можно отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (см. рисунок) предусматриваются секционирующие камеры 5. Для предприятий, не допускающих перерыва в подаче тепловой энергии, предусматривают схемы тепловых сетей с двусторонним питанием, местные резервные источники или кольцевые схемы.


Кольцевая схема (рисунок) предусматривается в крупных городах. Для устройства таких тепловых сетей требуются большие капитальные вложения по сравнению с тупиковыми. Достоинство кольцевой схемы – наличие нескольких источников, благодаря чему повышается надежность теплоснабжения и требуется меньшая суммарная резервная мощность котельного оборудования. При увеличении стоимости кольцевой магистрали снижаются капитальные затраты на строительство источников тепловой энергии. Кольцевая магистраль 1 подключена к трем ТЭЦ, потребители 2 через центральные тепловые пункты 6 присоединены к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены секционирующие камеры 5. Промышленные предприятия 7 также присоединены по тупиковой схеме.

Бесканальная прокладка теплопроводов по конструкции тепловой изоляции подразделяется на засыпную, сборную, сборно-литую и монолитную. Основной недостаток бесканальной прокладки – повышенная просадка и наружная коррозия теплопроводов, а также увеличенные теплопотери в случае нарушения гидроизоляции теплоизолирующего слоя. В значительной мере недостатки бесканальных прокладок тепловых сетей устраняются при использовании теплогидроизоляции на основе полимербетонных смесей.

Теплопроводы в каналах укладывают на подвижные или неподвижные опоры. Подвижные опоры служат для передачи собственного веса теплопроводов на несущие конструкции. Кроме того, они обеспечивают перемещение труб, происходящее вследствие изменения их длины при изменении их длинны при изменении температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.

Скользящие опоры используют в тех случаях, когда основание под опоры может быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае устанавливают катковые опоры, создающие меньшие горизонтальные нагрузки. Поэтому при прокладке трубопроводов больших диаметров в тоннелях, на каркасах или мачтах следует ставить катковые опоры.

Неподвижные опоры служат для распределения термических удлинений теплопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.

Для восприятия температурных удлинений и разгрузки теплопроводов от температурных напряжений на теплосети устанавливают радиальные (гибкие и волнистые шарнирного типа) и осевые (сальниковые и линзовые) компенсаторы.

Гибкие компенсаторы П - и S - образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для теплопроводов диаметром от 500 до 1000 мм. Такие компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных теплопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5…4,5 наружного диаметра трубы.

С целью увеличения компенсирующей способности гнутых компенсаторов и уменьшения компенсационных напряжений обычно их предварительно растягивают. Для этого компенсатор в холодном состоянии растягивается в основании петли, с тем чтобы при подаче горячего теплоносителя и соответствующем удлинении теплопровода плечи компенсатора оказались в положении, при котором напряжения будут минимальные.

Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность оказывать незначительное сопротивление протекающей жидкости. Их изготовляют односторонними и двусторонними для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы состоят из корпуса с фланцем на уширенной передней части. В корпус компенсатора вставлен подвижный стакан с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку вжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.

Камера для установки задвижек на тепловых сетях изображена на рисунке. При подземных прокладках теплосетей для обслуживания запорной арматуры устраивают подземные камеры 3 прямоугольной формы. В камерах прокладывают ответвления 1 и 2 сети к потребителям. Горячая вода в здание подается по теплопроводу, укладываемому с правой стороны канала. Подающий 7 и обратный 6 теплопроводы устанавливают на опоры 5 и покрывают изоляцией. Стены камер выкладывают из кирпича, блоков или панелей, перекрытия сборные – из железобетона в виде ребристых или плоских плит, дно камеры – из бетона. Вход в камеры через чугунные люки. Для спуска в камеру под люками в стене заделывают скобы или устанавливают металлические лестницы. Высота камеры должна быть не менее 1800 мм. Ширину выбирают с таки расчетом, чтобы расстояния между стенами и трубами были не менее 500 м.

Вопросы для самоконтроля:

1. Что называют тепловыми сетями?

2. Как классифицируются тепловые сети?

3. В чем преимущества и недостатки кольцевой и тупиковой сетей?

4. Что называют теплопроводом?

5. Назовите способы прокладывания тепловых сетей.

6. Назовите назначение и виды изоляции теплопроводов.

7. Назовите трубы, из которых монтируют тепловые сети.

8. Назовите назначение компенсаторов.

В начальной стадии развития централизованного теплоснабжения им были охвачены только существующие капитальные и отдельно строящиеся здания в зонах действия источника тепла. Подача тепла потребителям осуществлялась через тепловые вводы предусматриваемые в помещениях домовых котельных. В дальнейшем с развитием централизованного теплоснабжения особенно в районах нового строительства резко возросло количество абонентов присоединяемых к одному источнику тепла. Появилось значительное количество как ЦТП так и МТП у одного источника тепла в...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


СХЕМЫ ТЕПЛОСНАБЖЕНИЯ И ИХ КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Тепловые сети от источника до потребителя в зависимости от назначения делятся на участки, называемые: магистральными, распределительными (крупные ответвления) и ответвления к зданиям. Задачей централизованного теплоснабжения является максимальное удовлетворение тепловой энергией всех нужд потребителей, включая отопление, вентиляцию, горячее водоснабжение и технологические нужды. При этом учитывается одновременное действие устройств с требуемыми различными параметрами теплоносителя. В связи с увеличением радиуса действия и количества обслуживаемых абонентов возникают новые, более сложные задачи по обеспечению потребителей теплоносителем необходимого качества и заданных параметров. Решение этих задач приводит к постоянному совершенствованию схемы теплоснабжения, тепловых вводов в здания и конструкций тепловых сетей.

В начальной стадии развития централизованного теплоснабжения им были охвачены только существующие капитальные и отдельно строящиеся здания в зонах действия источника тепла. Подача тепла потребителям осуществлялась через тепловые вводы, предусматриваемые в помещениях домовых котельных. Эти котельные были расположены, как правило, непосредственно в отапливаемых зданиях или рядом с ними. Такие тепловые вводы стали называть местными (индивидуальными) тепловыми пунктами (МТП). В дальнейшем с развитием централизованного теплоснабжения, особенно в районах нового строительства, резко возросло количество абонентов, присоединяемых к одному источнику тепла. Возникли сложности в обеспечении некоторых потребителей заданным количеством теплоносителя. Тепловые сети становились неуправляемыми. Для устранения трудностей, связанных с регулированием режима работы тепловых сетей, в этих районах на группу зданий были созданы центральные тепловые пункты (ЦТП), расположенные в отдельно стоящих сооружениях. Размещение ЦТП в отдельных сооружениях было вызвано необходимостью устранения в зданиях шума, возникающего при работе насосных установок, особенно в зданиях массового строительства (блочных и панельных).

Наличие ЦТП в системах централизованного теплоснабжения крупных объектов в какой-то мере упростило регулирование, но полностью не решило поставленной задачи. Появилось значительное количество как ЦТП, так и МТП у одного источника тепла, в связи с чем осложнилось регулирование отпуска тепла системой. К тому же создание ЦТП в районах старой застройки практически не представлялось возможным. Таким образом, находятся в эксплуатации МТП и ЦТП.

Технико-экономическое сравнение показывает, что эти схемы примерно равноценны. Недостаток схемы с МТП — большое количество водоподогрева- телей, в схеме с ЦТП — перерасход дефицитных оцинкованных труб для горячего водоснабжения и частая их замена из-за отсутствия надежных способов защиты от коррозии.

Следует отметить, что с увеличением мощности ЦТП экономичность этой схемы повышается. ЦТП обеспечивает в среднем только по девять зданий. Однако увеличение мощности ЦТП не решает проблему защиты трубопроводов горячего водоснабжения от коррозии.

В связи с разработкой в последнее время новых схем абонентских вводов и изготовлением бесшумных бесфундаментных насосов стало возможным централизованное теплоснабжение зданий через МТП. Управляемость протяженных и разветвленных тепловых сетей при этом достигается путем обеспечения в отдельных секциях стабильного гидравлического режима. Для этой цели на крупных ответвлениях предусматривают контрольно-распределительные пункты (КРП), которые оснащают необходимым оборудованием и контрольно-измерительными приборами.

Схемы тепловых сетей . В городах тепловые сети выполняют по следующим схемам: тупиковой (радиальной)—как правило, при наличии одного источника тепла, кольцевой—при наличии нескольких источников тепла и смешанной.

Тупиковая схема (рис,а) характеризуется тем, что по мере удаления от источника тепла постепенно снижается тепловая нагрузка и соответственно уменьшаются диаметры трубопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях. Для повышения надежности обеспечения потребителей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, если мощность магистралей 350 МВт и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного снабжения теплом в количестве не менее 70% расчетного расхода.

Перемычки предусматривают также и между тупиковыми схемами при теплоснабжении района от нескольких источников тепла: ТЭЦ, районных и квартальных котельных 4. В таких случаях наряду с повышением надежности теплоснабжения появляется возможность в летний период с помощью одной или двух котельных, работающих на нормальном режиме, отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (рис.

  1. 1, а) предусмотрены контрольно-распределительные пункты 5.

Кольцевая схема (рис. б) применяется в крупных городах и для теплоснабжения предприятий, не допускающих перерыва в подаче тепла. Она имеет существенное преимущество по сравнению с тупиковой—несколько источников повышают надежность теплоснабжения, при этом необходима меньшая суммарная резервная мощность котельного оборудования. Увеличение стоимости, связанное с сооружением кольцевой магистрали, приводит к снижению капитальных затрат на строительство источников тёпла. Кольцевая магистраль 1 (рис.,б) снабжается теплом от четырех ТЭЦ. Потребители 2 получают тепло от центральных тепловых пунктов 6, присоединенных к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены контрольно-распределительные пункты 5. Промышленные предприятия 7 также присоединены по тупиковой схеме через КРП.

Рис. Схемы тепловых сетей

а — тупиковая радиальная; б — кольцевая

Другие похожие работы, которые могут вас заинтересовать.вшм>

229. СТАТИЧЕСКИЕ И КОНСТРУКТИВНЫЕ СХЕМЫ РАМ 10.96 KB
Рамные конструкции СТАТИЧЕСКИЕ И КОНСТРУКТИВНЫЕ СХЕМЫ РАМ Рамы представляют собой плоские конструкции состоящие из прямолинейных ломаных или криволинейных пролетных элементов называемых ригелями рамы и жестко связанных с ними вертикальных или наклонных элементов называемых стойками рамы. Такие рамы целесообразно проектировать при пролетах более 60 м однако они могут успешно конкурировать с фермами и балками при пролетах 24 60 м. В статическом отношении рамы могут быть трехшарнирными двухшарнирными и бесшарнирными рис. Трехшарнирные...
2261. КОНСТРУКТИВНЫЕ И СИЛОВЫЕ СХЕМЫ НАЗЕМНЫХ ГТД 908.48 KB
Одновальные ГТД Одновальная схема является классической для наземных ГТД и применяется во всем диапазоне мощности от 30 кВт до 350 МВт. По одновальной схеме могут быть выполнены ГТД простого и сложного циклов в том числе и парогазовые установки ПГУ. Конструктивно одновальный наземный ГТД аналогичен одновальным авиационным ТВД и вертолетным ГТД и включает компрессор КС и турбину рис.
230. СТАТИЧЕСКИЕ И КОНСТРУКТИВНЫЕ СХЕМЫ АРОК 9.55 KB
По статической схеме арки подразделяют на трехшарнирные двухшарнирные и бесшарнирные рис. Двухшарнирные арки менее чувствительны к температурным и деформационным воздействиям чем бесшарнирные и обладают большей жесткостью чем трехшарнирные арки. Двухшарнирные арки достаточно экономичны по расходу материала просты в изготовлении и монтаже и благодаря этим качествам находят преимущественное применение в зданиях и сооружениях. В арках загруженных равномерно распределенной...
12706. Разработка системы теплоснабжения жилого микрорайона в г.Москве, обеспечивающая бесперебойную подачу тепла всем объектам 390.97 KB
Исходные данные для проектирования. Расчет компенсаторов для главной магистрали. Промышленные предприятия получают пар для технологических нужд и горячую воду как для технологии так и для отопления и вентиляции. Производства тепла для промышленных предприятий требует больших затрат топлива...
12155. Модель определения оптимальных вариантов согласованной тарифной политики электроснабжения, теплоснабжения, водоснабжения и отведения загрязненных вод на долгосрочных производственных периодах 16.98 KB
Построена модель предназначенная для определения оптимальных вариантов распределения ограниченных объемов электрической и тепловой энергии водных ресурсов и такого распределения квот на отведение загрязненных вод при котором сбросы загрязненных вод в поверхностные водные объекты ограничены величиной ассимиляционного потенциала этих водных объектов. На основе этой модели разработана модель определения оптимальных вариантов согласованной тарифной политики электроснабжения теплоснабжения водоснабжения и отведения загрязненных вод....
14723. Конструктивные системы многоэтажных зданий 66.8 KB
Архитектурные конструкции многоэтажных зданий Общие требования предъявляемые к многоэтажным зданиям Многоэтажные жилые здания – жилые здания от 6 до9 этажей; здания повышенной этажности – от 10 до 25 этажей. По требованию к необходимому минимальному количеству лифтов в зависимости от этажности: Здания 6 – 9 этажей требуют наличия 1 лифта; здания 10 – 19 этажей. 2 лифтов; здания 20 – 25 этажей. В соответствии с Федеральным законом Российской Федерации от 2009 № 384ФЗ Технический регламент о безопасности зданий и...
2375. ДОРОЖНАЯ ОДЕЖДА. КОНСТРУКТИВНЫЕ РЕШЕНИЯ 1.05 MB
Определенные особенности связаны лишь с устройством слоев непосредственно контактирующих с прослойкой и введением дополнительной операции по укладке геосетки. Последняя операция ввиду технологичности геосетки удобной формой их поставки не сдерживает строительный поток. В связи с этим принимаемая длина захватки не связана обычно с укладкой геосетки но желательно соблюдать кратность длины захватки длине материала в рулоне. Армирование асфальтобетонных покрытий рекомендуется производить путем устройства прослойки из геосетки ССНПХАЙВЕЙ...
2191. КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ВОЗДУШНЫХ ЛИНИЙ СВЯЗИ 1.05 MB
Опоры воздушных линий связи должны обладать достаточной механической прочностью сравнительно продолжительным сроком службы быть относительно легкими транспортабельными и экономичными. До последнего времени на воздушных линиях связи применялись опоры из деревянных столбов. Затем начали широко применяться железобетонные опоры.
6666. Аналоговые схемы на ОУ 224.41 KB
При анализе аналоговых схем ОУ представляется идеальным усилителем, имеющим бесконечно большие значения входного сопротивления и коэффициента усиления, а выходное сопротивление - нулевое. Основным преимуществом аналоговых устройств
6658. Схемы замещения биполярного транзистора 21.24 KB
Схемы замещения биполярного транзистора При расчетах электрических цепей с транзисторами реальный прибор заменяется схемой замещения которая может быть либо бесструктурной либо структурной. Поскольку электрический режим биполярного транзистора в схеме ОЭ определяется входным током...

Приветствую Вас, дорогие и уважаемые читатели сайта “сайт”. Схема тепловой сети определяется наличием источника теплоснабжения, их тепловой мощностью, а также размещением источников теплоснабжения относительно потребителей теплоты. Также выбор схем тепловых сетей зависит от величин тепловых нагрузок потребителей теплоты, от характера тепловых потребителей и от вида теплоносителя. Схема тепловой сети должна обеспечивать надежность подачи теплоты и точность ее распределения между потребителями. Протяженность тепловой сети должна быть минимальна, а конфигурация должна быть по возможности простой и экономична в эксплуатации.

Наиболее простой и часто применяемой является радиальная схема (тупиковая) тепловой сети.

Принципиальная схема радиальная

1 – потребители теплоты

2 – тепловые сети

3 – источник теплоснабжения (котельная, ТЭЦ)

Радиальные тепловые сети характеризуются постепенным уменьшением диаметров трубопровода по мере удаления от источника теплоснабжения и снижения расхода сетевой воды. На трубопроводах тепловых сетей размещаются секционирующие задвижки на расстоянии от 1000 до 1500 м друг от друга. Секционирующие задвижки также устанавливаются на ответвлениях потребителей теплоты. Назначение секционирующей задвижки – это локализация места аварии тепловой сети и отключение потребителей. Радиальные тепловые сети наиболее просты и требуют больших капитальных и эксплуатационных затрат.

Главный недостаток радиальных тепловых сетей – отсутствие резервирования, т.е. при аварии на одном из участков, например, на схеме участок “Б-Г”, прекращается подача теплоты всем потребителям, расположенным после точки (участка) ”Г”.

Повышение надежности радиальных тепловых сетей возможны следующими методами:

  1. Совместная работа нескольких источников теплоснабжения на общую радиальную тепловую сеть.
  2. Резервирование отдельных элементов радиальной тепловой сети (4 вместо 1 подающего трубопровода, который рассчитан на пропуск 100% расхода сетевой можно проложить 2 трубопровода, каждый из которых рассчитан на пропуск 50% расхода сетевой воды).
  3. Использование технических мероприятий, повышающих вероятность безотказной работы отдельных элементов тепловой сети (например, антикоррозионная защита трубопроводов, использование стальной запорной арматуры вместо чугунной).
  4. Установка дублирующих перемычек между тепловыми сетями соседних районов.
  5. Использование щадящего режима при работе радиальной тепловой сети (например, работа систем теплоснабжения на пониженных температурных графиках τ 01 <=90 0 C, τ 02 <=60 0 C).

Однако повышение надежности радиальных тепловых сетей приводит к их значительному удорожанию и должно быть обосновано технико-экономическим расчетом.

Непрерывность подачи теплоты потребителям достаточно хорошо обеспечивается кольцевой схемой тепловой сети.

В кольцевых тепловых сетях предусматривается прокладка дублирующих магистральных участков (”А-А’-Г’-Е’-Ж”), а также предусматривается прокладка перемычек (например, ”В-В’; Г-Г’; Д-Д’; Е-Е’ ”). И в случае аварии на одном из участков потребитель будет получать тепловую энергию по дублирующей магистрали участкам через перемычки.

Кольцевание повышает надежность тепловых сетей, но приводит к значительному увеличению капитальных и эксплуатационных затрат. Выбор схема тепловой сети определяется технико-экономическим обоснованием с обязательным учетом надежности обеспечения потребителей тепловой энергией.

Потребители теплоты по надежности теплоснабжения разделяются на 3 категории:

  1. Потребители недопускающие перерыва подачи требуемого количества теплоты и недопускающие снижения температуры внутреннего воздуха в помещениях зданий (больницы, родильные дома, детские-дошкольные учреждения с круглосуточным пребыванием детей, галереи, шахты и т.д.).
  2. Потребители, допускающие снижение температуру внутреннего воздуха на период ликвидации аварии. Допустимое снижение температуру внутреннего воздуха на период ликвидации аварии составляет для жилых, общественных, административно-бытовых зданий до 12 0 С, для промышленных зданий до 8 0 С.
  3. Все остальные потребители теплоты (склады, гаражи, хранилища).

При авариях на тепловых сетях или на источнике теплоснабжения снижение подачи теплоты потребителям 2 и 3 категории приведено в таблице.

Допустимое снижение подачи теплоты потребителям 2 и 3 категории при аварийном режиме теплоснабжения

Расчетное время ликвидации аварии и полного восстановления теплоснабжения составляет от 15 до 54 часов (в зависимости от места возникновения аварии и сложности повреждения).

Согласно СНиП 41-02-2003 ”Тепловые сети”. Все тепловые сети населенных пунктов и промышленных предприятий подразделяются на:

  1. магистральные тепловые сети – предназначены для транспортировки теплоносителя от источников теплоснабжения до вводов в жилые районы или до вводов на территорию промышленных предприятий.
  2. распределительные тепловые сети – предназначены для транспортировки теплоносителя от магистральных тепловых сетей до тепловых пунктов жилых районов или промышленных предприятий.
  3. квартальные тепловые сети или межцеховые тепловые сети – предназначены для транспортировки теплоносителя от тепловых пунктов до зданий жилых районов или цехов промышленных предприятий.

Принципиальные схемы магистральной, распределительной и квартальной тепловых сетей.

1 — потребители теплоты (здания)

2 – источники теплоснабжения

3 – участки магистральной тепловой сети

4 – распределительные тепловые сети

5 – квартальные тепловые сети

6 – центральные тепловые пункты

Принципиальная схема тепловых сетей с индивидуальными тепловыми пунктами

На рисунках приведены схемы радиальная магистральная распределительная и квартальная тепловых сетей для 2-х жилых районов при наличии 2-х источников теплоснабжения.

Для каждого жилого района предусматривается подача теплоты от любого источника теплоснабжения (посредством переключения задвижек на магистральной и распределительной тепловых сетях). Магистральные тепловые сети и распределительные тепловые сети транспортируют теплоноситель для всех видов теплового потребления, т.е. в одном трубопроводе находится сетевая вода и для отопления, и для вентиляции, и для горячего водоснабжения и возможно даже для технологических нужд потребителей теплоты.

Магистральные тепловые сети и распределительные тепловые сети прокладываются, как правило, 2-х трубными, квартальные и межцеховые сети транспортируют теплоноситель для каждого вида теплового потреблении по отдельности, т.е. отдельно прокладываются сети для отопления (так называемые отопительные тепловые сети), отдельно прокладываются сети для горячего водоснабжения (сети горячего водоснабжения), также на промышленных предприятиях могут прокладываться сети для покрытия технологической тепловой нагрузки.

Квартальные и межцеховые тепловые сети прокладываются либо 4-х трубные, либо много трубные, при наличии жилых районов или на промышленных предприятиях, индивидуальных тепловых пунктах практически стираются отличия между распределительными и квартальными тепловыми сетями, т.е. распределительные тепловые сети в этом случае прокладываются в самих жилых кварталах, или между цехами в промышленных предприятиях.

© ebergardt.ru, 2024
Строим вместе