Способ преобразования энергии ветра в электрическую энергию: устройство и принципы работы ветрогенератора. Устройство и расчет ветроэлектростанций Как преобразовать кинетическую энергию в электрическую

27.02.2024

Наука имеет различные коэффициенты по преобразованию кинетической энергии в тепловую. Однако, до настоящего времени не расшифрована физическая суть такого преобразования.

Это преобразование связано с трением. Трение процесс взаимодействия тел при их относительном движении (смещении). Трение всегда сопровождается выделением тепла и износом трущихся поверхностей.

Выделение тепла связано также с ударами минимум двух тел (в частности, при лёгком постукивании молотком по металлу, удар пушечного ядра в корпус корабля и др.).

Преобразование кинетической энергии в тепловую - это частный случай волнового взаимодействия замкнутых контуров (атомов, доменов) имеющих пульсационные электронные оболочки.

В любой среде распространение волн всегда сопровождается потерями - диссипацией энергии . Все волны обладают энергией и у всех физических волн происходит диссипация энергии.

Наукой принято, что кинетическая энергия любой движущейся частицы представляет собой волну Луи де Бройля. Де Бройлем был выведен принцип универсальности корпускулярно-волнового дуализма относительно всех видов элементарных частиц (атомов, электронов, и т.д.). Все частицы находятся в колебательном движении с длиной волны

л=h / m ? v» (л = h/p),

где m и v - масса и скорость частицы, масса составляет

m = h / л? v », p - импульс «p = h / л» ,

«р = m ? v», «р = Ft (действия силы) ».

Позднее, наукой выведена формула диссипации кинетической энергии за один период колебания волны де Бройля.

Диссипация -

«Wd = H0hс/v»

(считается формулой «вязкости физического вакуума»), где H 0 - постоянная Хаббла (2.40 ± 0.12)·10 -18 Гц, «h» - постоянная Планка, «с» - скорость света, «v» - скорость частицы. Формула подходит для всех тел и частиц.

Из формулы видно, что диссипация кинетической энергии прямо пропорциональна массе и пройденному расстоянию, а также импульсу и времени его действия.

Вывод науки: у всех волн помимо таких свойств как длина, частота и энергия имеется еще и диссипация энергии из-за того, что при каждом колебании волны происходит перекачка одного вида энергии в другой и наоборот.

Какие выводы можно сделать из данного утверждения?

Формула и трактовка диссипации говорит о том, что кинетическая энергия с каждым колебанием снижается, по умолчанию, до полного угасания волн и перехода в тепловую энергию. Это выражается в аспекте «однонаправленности» и «необратимости» эволюционного процесса в Мироздании - фундаментального положения современной науки - Второго начала термодинамики. В результате этого необратимого процесса космические формации обязательно «сваливаются» в термодинамическое равновесие - «тепловую смерть» с максимумом энтропии и хаоса (максимальной степени неупорядоченности теплового движения, т.е. в конечной стадии на уровень элементарных частиц - прим. А.П.). Для науки круговорот материи в Мироздании закончился, т.к. какого-либо реального механизма формирования сингулярной точки и последующего её «Большого Взрыва» в Природе не существует. Имеется единственный выход из данной абсурдной ситуации - признать существование Первичной космической субстанции - элементарных частиц и три стадии их структурирования - монного, три-А-дного и дихотомического.

Размыкание эволюционного процесса в науке является результатом отсутствия в Парадигме двух факторов - гексагональных тороидальных «этажей» - слоёв в частотно-спектральной структуре Мироздания, а также механизма космической пульсации.

В результате в науке (термодинамике) до настоящего времени нет механизма обратимости процессов во Вселенной - тороидальных структур с магнитными потоками N-SS-N (N-SS-NN-S….), т.е. процессов структурирования аннигиляции материи и Мироздания. А однажды возбуждённые волны, в отсутствие механизма космической пульсации, в результате диссипации, безвозвратно угасают.

В соответствие с внутри-Природной информационной системой, в волновых процессах импульс, возбуждающий Среду, создается пульсационным выбросом (с определённой массой, силой с определённой временной продолжительностью

р = Ft (действия силы)

Колебательное же движение - волну создаёт череда периодических импульсов (периодических актов пульсации частиц ) на каждой несущей частоте, формируемой в ходе дихотомического структурирования материи и «этажей» Вселенной.

В этих условиях реальная волна выглядит как чередование сгущений (с повышенной плотностью вещества) и разрежений (с пониженной плотностью) вещества (частиц) Среды. В графическом изображении волна - это череда максимумов и минимумов амплитуды колебаний, для стоячих волн - череда узлов и пучностей.

Пульсационный выброс одного импульса имеет определённое количество выбрасываемого источником вещества и поэтому радиус выброса в трёхмерном пространстве ограничен. Пульсационный выброс формирует спектр излучения. Каждый последующий импульс также формирует спектр, который накладывается на предыдущий. При наложении спектров выбрасываемое вещество взаимодействует и формирует устойчивое частотно-спектральное распределение материи с максимумами лучевой энергии на «синем» конце и тепловой энергии на «красном» конце спектра. Диссипации, как таковой, с каждым колебанием волны не происходит. Тепловые потери при взаимодействии налагающихся друг на друга спектров компенсируются пульсационными выбросами. Диссипация, в данном случае, это отражение снижения лучевой энергии от источника пульсации к «красному» концу спектра (при одновременном росте тепловой энергии на «красном» конце).

Залогом существования реального Мира является способность октаедрических корпускул материи (результата дихотомического структурирования) поглощать более мелкие космические формации (корпускулы), т.е. восстанавливать свою потерянную энергию и пульсировать (выбрасывать поглощаемые частицы) наружу (процессы поглощения и излучении телами известны ещё со времён Кирхгоффа (1859 г.). Часть выброшенных частиц составляет электрическую оболочку корпускулы, часть более энергичных («тепловых», как говорилось выше, более «скоростных» и быстрых) наполняет окружающую Среду. Эти «скоростные» тепловые частицы также являются предметом последующего поглощения и пульсации корпускул. Баланс сохраняется, Закон сохранения энергии обеспечивается.

Таким образом, в реальности, можно выделить два вида диссипации.

Во-первых, диссипация (лучевой) энергии, как отражение угасания (ослабление) импульса в пульсационном цикле.

Во-вторых, диссипация - потеря кинетической энергии с переходом в тепло в ходе передачи импульса от одних колеблющихся частиц Среды (замкнутых контуров, тел, ионов кристаллической решётки, свободных электронов) к другим. Этот вид соответствует определению диссипации науки (при условии дополнительного учёта пульсационных процессов).

Механизм перехода кинетической энергии в тепловую представляется следующим образом.

Трение взаимодействующих тел - результат всеобщей «вязкости физических сред» (в.т.ч. «физического вакуума»). Отсюда - физическая суть диссипации - перехода кинетической энергии в тепло - это взаимодействие электрических (пульсационных) оболочек корпускул. На атомно-молекулярном уровне это взаимодействие электронных оболочек, в большей степени её наружных («валентных») электронных слоёв.

При контакте и перемещении относительно друг друга (трении) «валентные» слои спектра пульсации (с частотными фракталами 3,4-3,1 Гц деформируются, частично разрушаются с выделением «скоростных» частиц (т.н. быстрых электронов) в окружающую Среду. Происходит феномен выделения тепла. Тенденция перехода частотного фрактала (солитона) от 3,1 в сторону к 3,0 Гц приводит к дополнительному нагреву (частичному эффекту «самопроизвольного» нагревания).

Ударное взаимодействие существует в двух видах - внешнего и внутреннего ударов.

В случае внешнего ударного взаимодействия происходит деформация более глубоких (по сравнению с трением) электронных слоёв, с выбросом значительно большего количества «быстрых» частиц. Происходит мощное разогревание до свечения и даже плавления ударяющихся поверхностей.

Количество тепловой энергии пропорционально кинетической энергии (скорости и массе) ударного тела, т.е. достаточной амплитуде и длине пробега, а также импульсу (характеризующегося силой и продолжительностью удара).

Внутренний удар характерен для взаимодействия внутри корпускулы, в частности, ударов структурных элементов триплета о свою энергетическую оболочку, а также взаимных ударов элементов самого триплета.

Откуда в этом случае возникают «скоростные» мелкие частицы, определяющие проявление тепловой энергии? Суть феномена в том, что элементы триплета и контур корпускулы на атомно-молекулярном уровне являются сложными частицами в составе множества суб- суб- суб-…частиц на различных уровнях несущих частот. В результате, внутренних ударов также выбивается в Среду множество скоростных тепловых частиц.

Тепловой эффект возможен также за счёт высокочастотного облучения (например, - излучением или «биологическим - N» через резонанс) повышающего рост частотного фрактала «синего» конца спектра (в частности, до 7,7 Гц и выше).

В технике, при сварке и резке материалов, эффект внешнего удара (и облучения) используется путём одновременного точечного облучения разными по мощности лучами.

Изобретение относится к преобразователям энергии набегающего потока, например в области ветроэнергетики, нетрадиционной энергетики, гидроэнергетики, а также в контрольно-измерительных приборах. Используются вместе два физических эффекта: автоколебания и электромагнитная индукция. Преобразование энергии набегающего потока осуществляется за счет электромагнитной индукции, возникающей при автоколебаниях размещенных в набегающем потоке металлических струн (упругих проводников), расположенных в магнитном поле. Согласно закону электромагнитной индукции металлическая струна, совершая колебательные движения в магнитном поле, становится генератором электрической энергии (тока). Особенность способа позволяет увеличивать мощность преобразователя, увеличивая количество струн в преобразователе до необходимого числа. 1 ил.

Изобретение относится к преобразователям энергии набегающего потока и может быть использовано в области ветроэнергетики, нетрадиционной энергетики, гидроэнергетики, а также в контрольно-измерительных приборах.

Для преобразования кинетической энергии потока в электрическую известны ветродвигатели с вертикальной и горизонтальной осью вращения.

Ветродвигатели с вертикальной осью вращения имеют ряд недостатков:

Тихоходность;

Используют редукторы, которые значительно снижают коэффициент полезного действия, а также надежность ветродвигателя.

Ограниченность размеров лопастей ветродвигателей с горизонтальной осью определяет ограничение на мощность ветродвигателей, а использование устройства для поворота крыльчатки в направлении, перпендикулярном движению потока ветра, вызывает снижение надежности и коэффициента полезного действия ветродвигателя, а также увеличивает его стоимость.

Известен преобразователь энергии потока (см. RU 2142572 С1, опубл. 10.12.1999 г., МПК 6 F 03 D 5/06), использующий преобразование кинетической энергии потока в потенциальную, а затем в механическую. Для этого используется полое тело. Оно заменяет крыльчатку (лопасти), что уменьшает размеры и увеличивает надежность преобразователя энергии потока.

Недостатком данного преобразователя является использование в нем механических преобразователей движения, снижающих коэффициент полезного действия, надежность, увеличивающих стоимость и размеры преобразователя энергии потока.

Наиболее близким решением (прототипом) является способ преобразования энергии, заключающийся в том, что преобразование осуществляется за счет электромагнитной индукции путем размещения проводника в магнитном поле и воздействии на него набегающего потока (см. JP 11294314, МПК 7 F 03 D 9/00, опубл. 26.10.1999 г.).

Недостатком данного способа является его низкая эффективность.

Технической задачей изобретения является повышение эффективности использования указанного способа.

Технический результат достигается тем, что в способе преобразования энергии, заключающемся в том, что преобразование осуществляется за счет электромагнитной индукции путем размещения проводника в магнитном поле и воздействия на него набегающего потока, в качестве проводника размещают металлические упругие струны.

Иллюстрация работы предлагаемого преобразователя представлена на чертеже.

Автоколебания натянутой металлической струны 1, помещенной в магнитное поле 2, поддерживаются за счет кинетической энергии набегающего потока 3.

Частота и амплитуда установившихся колебаний определяется параметрами струны и параметрами ее взаимодействия с набегающим потоком. Частота колебаний струны (ν):

где S - площадь сечения;

Q - натяжение;

ρ - плотность материала;

n - целое число.

Согласно закону электромагнитной индукции металлическая струна (1), совершая колебательные движения в магнитном поле (2), становится генератором электрической энергии (тока).

Возникающую при этом электродвижущую силу (∈) можно оценить по формуле:

где v - скорость перемещения;

В - напряженность магнитного поля;

l - длина проводника;

α - угол между силовыми линиями магнитного поля и струной.

Особенность способа позволяет увеличивать мощность преобразователя, увеличивая количество струн в преобразователе до необходимого числа.

Способ преобразования энергии, заключающийся в том, что преобразование осуществляется за счет электромагнитной индукции путем размещения проводника в магнитном поле и воздействия на него набегающего потока, отличающийся тем, что в качестве проводника размещают металлические упругие струны.

Атмосфера Земли представляет собой огромный и неиссякаемый источник энергии. Постоянное движение воздушных масс имеет гигантскую кинетическую энергию, об истинных размерах которой можно только догадываться. Достаточно рассмотреть последствия любого урагана или просто шквалистого ветра, чтобы получить представление о масштабах имеющихся запасов энергии, использование которой пока еще ведется на минимальном уровне.

Наличие более эффективных способов производства электроэнергии ограничило активность исследовательских работ в этой области, которые были возобновлены относительно недавно. Нехватка углеводородных источников, разразившийся топливно-энергетический кризис заставляют пересматривать отношение к альтернативным вариантам производства электроэнергии, лидером среди которых является .

Энергия ветра на службе у человека

На сегодняшний день существуют полноценные электростанции, вырабатывающие электроэнергию при помощи потоков ветра. Их довольно много, таких станций насчитывается около 20 тыс. При этом, утверждать, что человек подчинил себе энергию ветра и использует ее вполне эффективно, преждевременно. Несмотря на значительные объемы полученной энергии, возможности ветроэнергетики пока еще далеки от идеала.

Существующие установки обладают недостаточной эффективностью, вызванной сложностью условий эксплуатации и невозможностью регулирования воздушных потоков. Их неравномерность - одна из ключевых причин, сдерживающих развитие отрасли. Ведущиеся исследования в этой области выдают предельную величину - 59,3 % , что намного выше, чем реально существующие значения, но недостаточно в целом.

Понимание важности и большого потенциала ветроэнергетики в обществе постоянно укрепляется. Больших успехов в этой области достигли Китай и Индия, обладающие .

Особенностью отрасли является возобновляемый характер источника энергии, возможность бесконечного пользования ресурсом. В этом отношении ветроэнергетика является наиболее устойчивой по сравнению с другими способами производства электричества.

Исследования и разработки ведутся постоянно, их интенсивность в последнее время заметно усилилась. Появляются совершенно новые модели, использующие методики, отличные от распространившихся ныне. Активность конструкторов и исследователей сама по себе является свидетельством возрастания роли ветроэнергетики и гарантией увеличения количества ветрогенераторов в будущем.

Устройство для преобразования

Для того, чтобы кинетическую энергию ветра трансформировать в электрическую, необходимо использовать соответствующее оборудование. Наиболее распространенным устройством для преобразования является ветрогенератор . Это агрегат, состоящий из нескольких узлов, выполняющих задачи по приему, передаче и преобразованию энергии потока ветра в электричество.

Существует множество вариантов конструкции ветряков, выполняющих одну и ту же функцию при помощи рабочего колеса с лопастями. Отличие всех видов конструкции состоит в направлении оси вращения и в конструкции вращающегося узла - ротора.

Ветрогенераторы делятся на две большие группы, имеющие разное расположение оси вращения:

  • горизонтальные
  • вертикальные

Наиболее эффективными считаются горизонтальные устройства, напоминающие пропеллер самолета. Поток ветра, воздействующий на лопасти, используется максимально возможным образом, практически без потерь. При этом, имеется постоянная необходимость коррекции положения оси в зависимости от направления ветра, что вынуждает использовать дополнительные приспособления и устройства. Наиболее простым и эффективным среди них является хвостовой стабилизатор, аналогичный хвосту самолета, автоматически устанавливающий ветряк по ветру.

Вертикальные конструкции имеют важное достоинство - независимость от направления ветра. При этом, эффективность таких устройств несколько ниже, так как поток одновременно воздействует как на рабочую, так и на обратную сторону лопастей, создавая уравновешивающее усилие. Оно останавливает вращение ротора, вынуждая прибегать к различным конструктивным ухищрениям. Так, используются различные кожухи, закрывающие обратные стороны лопастей.

Также применяют наружные конструкции, прикрывающие доступ потока к тыльным частям лопастей, спрямляющие устройства, направляющие поток в нужную сторону и т.д.

Практические результаты показали наибольшую эффективность горизонтальных установок в составе промышленных электростанций и выгоду использования вертикальных конструкций для обеспечения энергией отдельных домовладений.

Принципы работы ветрогенератора

Ветрогенератор является агрегатом, состоящим из нескольких узлов. Они выполняют отдельные задачи, являясь звеньями в цепи последовательных изменений вида энергии.

  • поток воздуха, взаимодействуя с крыльчаткой ветряка, заставляет ее вращаться
  • движение вала передается на генератор, который производит электрический ток
  • с генератора напряжение через выпрямитель подается на аккумулятор, заряжая его
  • за уровнем заряда следит специальное устройство - контроллер, отключающее питание и включающее его снова по необходимости
  • с аккумулятора заряд подается на инвертор, приводящий полученный ток в соответствующее состояние (220 В, 50 Гц) и передающий его потребителям

Небольшие устройства иногда работают по упрощенной схеме, подавая напряжение непосредственно с генератора потребителям. Это возможно для питания водяных насосов или освещения участка, теплицы и т.д.

Производительность ветрогенератора зависит от параметров собственно генератора, размеров и конструкции крыльчатки. Кроме того, важным параметром является преобладающая скорость ветра в регионе, обеспечивающая базовый режим вращения ротора и определяющая производительность всего комплекса.

Если вы думали, что вашему мобильному телефону пригодился бы микро-генератор, то вы не единственный, кто так думает. Финская компания Nokia запатентовала пьезоэлектрический коллектор кинетической энергии, предназначенный обеспечить дополнительное питание для портативной электроники. В устройстве, например, в мобильном телефоне, батарея будет установлена ​​на маленьких рельсах, что позволит ей двигаться при вашей ходьбе вверх и вниз и при этом производить электроэнергию. А в чрезвычайной ситуации вы сможете еще и встряхнуть ваш телефон и этим дать телефону дополнительную порцию энергии.

4. Солнечно-тепловые генераторы

Зачем полагаться только на один способ генерации энергии, когда вы можете воспользоваться двумя в то же время? Fujitsu создала тонкие и гибкие устройства, которые работают одновременно и как солнечные панели, и как термоэлектрический генератор. Это означает, что вы можете создавать в два раза больше энергии, либо можете генерировать ее достаточное количество, если совершенно темно или совсем холодно. Вы сможете генерировать энергию даже, если достаточно темно и прилично холодно одновременно. Это устройство довольно универсальное, и, что еще лучше, должно быть достаточно простым и дешевым в производстве. Ищите его в коммерческих продуктах ближе к 2015 году.

5. Гибкий нано-генератор

Никто не хочет носить с собой личные генераторы энергии, которые являются громоздкими и раздражают при каждом шагу. Идеальные системы будут настолько плотно и незаметно интегрированы в нашу жизнь, что мы не будем даже замечать, что являемся ходячими электростанциями. Один из способов – это просто все сделать супер-крошечным, т. е. нано-размеров. Вы не будете получать много энергии из настолько маленьких генераторов, но это не будет иметь значения, так как их будет очень много. Исследователи Georgia Tech выяснили, как внедрять крошечные пьезоэлектрические нано-провода на гибкие листы полимера, и когда листы сжимаются, провода качают электричество. Если такие генераторы встроить в ткань одежды, то они будут генерировать энергию при каждом вашем движении.

6. Прозрачная солнечная панель

Являются отличным источником электроэнергии, но все, что имеет на себе панель солнечных батарей, не может быть использовано для выполнения еще какой-то задачи. С другой стороны, если солнечные панели можно было бы как-то сделать прозрачными, то их могли бы пристроить к любому устройству, и они были бы незаметными. В данный момент можем сказать: “Добро пожаловать в будущее!”, потому что французская компания под названием Wysips разработала совершенно невидимую солнечную панель в виде пленки. Толщиной в 100 микронов, ее можно интегрировать в дисплей мобильного телефона, где она может в течении часа от солнечных лучей собрать достаточно энергии, чтобы обеспечить телефонный разговор длительностью солидных 30 минут. На рынке подобные устройства могут появиться в течение этого года.

7. Солнечная ткань

Военные всегда очень интересовались возможностью использовать личные вещи для производства энергии, поскольку в настоящее время солдаты таскают сумасшедшее количество батарей для питания всего своего оборудования, что конечно утомляет солдат. Научный центр инженерно-физических исследований в Великобритании работает над проектом военной формы, которая должна функционировать как генератор, который собирает солнечную энергию непосредственно через новый тип ткани. Термоэлектрический компонент также может генерировать электричество, когда темно или туманно, пока он теплый, а в качестве дополнительной пользы данный компонент сможет уменьшить инфракрасный силуэт солдата. Прототип системы должен быть готов к декабрю, и, рано или поздно, неизбежно перейдет в свой коммерческий этап.

8. Персональная панель солнечных батарей

Для ближайшего будущего, солнечные панелей являются одним из самых дешевых и самых надежных способов сбора электроэнергии, особенно если вы живете где-то, где хорошо и солнечно большую часть времени года. Есть много различных персональных систем солнечных панелей, но Solio является одним из самых умных. На самом деле, устройство состоит из трех солнечных панелей, которые открываются как цветок, и вы можете через центральное отверстие вставить карандаш, чтобы подпирать его под оптимальным углом относительно Солнца. В нем есть и встроенный аккумулятор, чтобы обеспечить хранение полученной электроэнергии для времени дня, когда становится темно. Весь комплект должен стоить около $ 70.

9. Ветровая микро-турбина

Энергия ветра становится все больше значимым источником электроэнергии, особенно когда ветровые турбины становятся все более и более гигантскими. Вам лично для повседневной жизни не нужно потенциала гигантских турбин, так что ваша собственная маленькая микро-турбина вполне может быть в состоянии удовлетворить некоторые из ваших потребностей в электроэнергиеи. HYmini персональная ветровая турбина предназначена для монтажа на велосипеде или на руку, когда вы бежите трусцой, при чем ее вращающиеся лезвия генерируют электричество для зарядки встроенной батареи. При цене всего $ 50 за штуку, вы могли бы купить целое стадо из них, и наклеить их на всю поверхность вашего электрического автомобиля. Пока вы едете достаточно быстро или паркуетесь рядом с ураганом, вам никогда снова не придется зависеть от наличия электросети.

© ebergardt.ru, 2024
Строим вместе