Конденсаторы: назначение, устройство, принцип действия. Территория электротехнической информации WEBSOR Что представляет собой плоский конденсатор

18.01.2024

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским . Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1.6.1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния . В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 1.6.2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля (см. § 1.4 ).

Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением

Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин:

Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S , где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed , где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

Сферический и цилиндрический конденсатор .

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R 1 и R 2 . Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R 1 и R 2 и длины L . Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

Параллельное и последовательное соединение конденсаторов.

Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов (рис. 1.6.3) напряжения на конденсаторах одинаковы: U 1 = U 2 = U , а заряды равны q 1 = С 1 U и q 2 = C 2 U . Такую систему можно рассматривать как единый конденсатор электроемкости C , заряженный зарядом q = q 1 + q 2 при напряжении между обкладками равном U . Отсюда следует

При последовательном соединении (рис. 1.6.4) одинаковыми оказываются заряды обоих конденсаторов: q 1 = q 2 = q , а напряжения на них равны и Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U 1 + U 2 . Следовательно,

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

Две плоские пластины, расположенные параллельно друг другу и разделенные диэлектриком, составляют плоский конденсатор. Это самый простой представитель конденсаторов, которые предназначены для накопления разноименной энергии. Если пластинам сообщить заряд, равный по величине, но разный по модулю, то поля между проводниками увеличится вдвое. Отношение заряда одного из проводников к напряжению между пластинами конденсатора называют электроемкостью:

Если расположение пластин будет неизменным, то можно считать константой при любом заряде проводников. В международной системе измерений единица электроемкости - Фарад (Ф). Плоский конденсатор имеет напряженность, равную сумме напряженностей, создаваемых проводниками (E 1 +E 2 ...+ E n ). Величины векторные. Значение электроемкости прямо пропорционально площади пластин и обратно пропорционально расстоянию между ними. Это значит, что, дабы увеличить электроемкость конденсатора, необходимо сделать площадь пластин больше, при этом уменьшив расстояние между ними. В зависимости от используемого диэлектрика, плоский конденсатор может быть:

  • Бумажным.
  • Слюдяным.
  • Полистирольным.
  • Керамическим.
  • Воздушным.

Принцип устройства рассмотрим на примере бумажного конденсатора. Бумага, обработанная парафином, используется в данном случае в качестве диэлектрика. Прокладывается диэлектрик между двумя полосами фольги, которые выполняют роль проводников. Вся конструкция сворачивается в рулон, в который вставляются выводы для подключения к Данная модель помещается в керамический или металлический корпус. Плоский воздушный конденсатор и другие виды накопителей заряда представляют собой подобную конструкцию, только в качестве диэлектрической среды используются материалы, в честь которых назван сам конденсатор. При решении задач, в которых необходимо найти искомые величины, не забывайте использовать величину, характеризующую диэлектрик, - диэлектрическую проницаемость среды.

В радиотехнике используются жидкие и сухие Жидкостные конденсаторы представляют собой в который помещена алюминиевая оксидированная пластина. Находится данная субстанция в металлическом корпусе. В качестве электролита используется раствор борной кислоты и некоторые другие смеси. Сухой вид накопителей выполнен посредством сворачивания трех лент, одна из которых алюминиевая, другая - металлическая, а между ними - марлевый слой, пропитанный вязким электролитом. Рулон помещен в алюминиевый корпус и залит битумом. Плоский конденсатор имеет широкую область применения и невысокую стоимость. К сожалению, данные модели не заменят нам аккумуляторных батарей, ведь энергия плоского конденсатора очень мала, и заряд очень быстро "утекает". Они не подходят в качестве источников электричества, но обладают одним преимуществом - при зарядке через цепь малого сопротивления мгновенно отдают накопленную энергию.

Один из самых распространённых электронных элементов – конденсатор. В разговоре такие элементы называют «ёмкость». Простейшая конструкция для изготовления и расчетов – плоский конденсатор.

Что такое плоский конденсатор

Это понятие относится к конструкции, состоящей из двух пластин, параллельных друг другу. Расстояние между ними должно быть во много раз больше размеров самих пластин. В этом случае краевыми эффектами можно пренебречь. В противном случае эти эффекты приобретают большое значение, а формулы для расчета ёмкости становятся слишком сложными.

Важно! Другое название этих пластин – обкладки.

Каждый из электродов создаёт вокруг себя электрическое поле одинаковой величины и противоположной направленности: в обкладке, заряженной положительно, q+, а в отрицательной – q-.

В плоском конденсаторе электрическое поле находится между обкладками и является однородным. Напряжённость его рассчитывается по формуле:

E∑=qεε0*S, где:

  • q − заряд электродов;
  • S − площадь обкладок;
  • ε − диэлектрическая проницаемость материала между ними – параметр, определяющий, во сколько раз сильнее влияние зарядов друг на друга, чем в вакууме;
  • Фмε0=8,85*10−12 Ф/м − электрическая постоянная.

От чего зависит электроемкость конденсатора

Для расчета ёмкости применяется формула:

C=ε*ε0*Sd, где:

  • S − площадь обкладок;
  • d − расстояние между ними;
  • Фмε0=8,85*10−12 Ф/м − электрическая постоянная;
  • ε − диэлектрическая проницаемость изоляционного материала, находящегося между электродами.

Таким образом, ёмкость зависит от площади обкладок, расстояния между ними и диэлектрической проницаемости изоляционного материала.

Для уменьшения габаритов «сэндвич» из плоских электродов с изолятором между ними сворачивается в рулон. При условии, что толщина изолятора во много раз меньше радиуса цилиндра, последним можно пренебречь.

Ещё один путь увеличения ёмкости – уменьшение расстояния между обкладками, при этом падает электрическая прочность – напряжение, при котором происходит пробой конденсатора, и он выходит из строя.

Интересно. В новом типе конденсаторов – ионисторах в качестве обкладок используется активированный уголь или графен, пористая структура которых позволяет многократно увеличить ёмкость элементов (до нескольких фарад).

Заряд и разряд конденсаторов

Носителями заряда в металлах являются свободные электроны. При подключении устройства к источнику напряжения: батарейке, аккумулятору или сети, электроны из обкладки, подключённой к положительному полюсу батареи, устремятся в источник питания, и обкладка зарядится положительно. В обкладку, подключённую к отрицательному полюсу, начнут поступать электроны. Этот процесс изображён на рисунке ниже.

При этом растёт напряжённость электрического поля в устройстве между электродами и напряжение на устройстве. Этот процесс закончится, когда напряжение между выводами элемента станет равным напряжению сети. При этом внутри него будет запасено некоторое количество энергии, которое рассчитывается по формуле:

E = (U²* C)/2, где:

  • E – энергия (Дж);
  • U – напряжение (В);
  • C – ёмкость (мкФ).

При подключении аппарата в цепь нагрузки избыточные электроны из отрицательного вывода через нагрузку начнут поступать в положительный вывод. Это движение закончится при уравнивании потенциалов между выводами.

Этот процесс не может произойти мгновенно, что позволяет использовать конденсаторы в качестве фильтра, сглаживающего пульсации напряжения в сети.

Важно! Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь.

Расчёт ёмкости плоских конденсаторов

Ёмкость идеального устройства, в котором между пластинами находится воздух, можно вычислить по формуле:

Cо=Q/U, где:

  • Cо – ёмкость;
  • Q – заряд на одном из пластин устройства;
  • U – разность потенциалов или напряжение между выводами.

Этот параметр зависит только от напряжения и накопленного заряда, но они меняются при изменениях расстояния между обкладками и типа диэлектрика между ними. Это учтено в формуле:

С=Co*ε, где:

  • С – реальная ёмкость;
  • Со – идеальная;
  • ε – диэлектрическая проницаемость изоляционного материала.

Единица ёмкости – 1 фарад (1Ф, 1F). Есть также меньшие величины:

  • Микрофарады (1мкФ, 1mkF). 1000000mkF=1F;
  • Пикофарады (1пФ, 1pF). 1000000pF=1mkF.

Допустимое напряжение

Кроме ёмкости, важный параметр, влияющий на применение элемента и его габариты, – допустимое напряжение. Это величина разности потенциалов на выводах устройства, при превышении которой произойдёт электрический пробой диэлектрика между обкладками, короткое замыкание внутри конструкции и выход её из строя.

При отсутствии элемента с необходимыми параметрами можно соединить вместе имеющиеся приборы.

Есть три вида соединений: последовательное, параллельное и смешанное, являющееся комбинацией параллельного и последовательного.

Расчёт последовательного соединения

При этом виде соединения заряды на всех обкладках одинаковы:

Это происходит потому, что напряжение источника питания подаётся только на внешние вывода крайних элементов. При этом происходит перенос заряда с одного электрода на другой.

Напряжение при этом распределяется обратно пропорционально ёмкости:

U1 = Q/C1, U2 = Q/C2,…,Un=Q/Cn.

Итоговое напряжение равно напряжению сети:

Uсет=U1+U2+…+Un.

Эквивалентная ёмкость определяется по формулам:

  • С=Q/U=Q/(U1+U2+…+Un),
  • С=1/С1+1/С2+…+1/Cn,
  • или сложением проводимостей.

Справка. Проводимость – это величина, обратная сопротивлению.

Расчёт параллельного соединения

При параллельном соединении обкладки элементов попарно соединяются между собой. Напряжение на всех устройствах равно между собой, а заряды отличаются в зависимости от ёмкости:

Q1=C1U, Q2=C2U,…Qn=CnU.

Общий заряд системы равен общей сумме на всех элементах:

а общая ёмкость равна общей для всех устройств:

C=Q/U=(Q1+Q2+…+Qn)/U=C1+C2+…Cn.

Как проверить емкость конденсатора

При отсутствии маркировки на корпусе устройства или сомнении в его исправности определение емкости конденсатора производится мультиметром, у которого есть соответствующие функции, или обычным вольтметром и амперметром.

Проверка путём измерения времени зарядки

При подключении ёмкостного элемента к сети постоянного тока через сопротивление напряжение на его выводах растёт по экспоненциальному графику и за период времени 3R*C станет равным 95% U сети.

Соответственно, зная номинал резистора, параметры конденсатора определяются по формуле:

Номинал резистора зависит от ожидаемых параметров измеряемого элемента и определяется опытным путём.

Важно! Этим способом можно определить емкость конденсатора от 0,25мкФ и выше.

Измерение ёмкостного сопротивления

Кроме определения времени заряда, можно узнать ёмкостное сопротивление. Оно зависит от частоты напряжения на выводах прибора:

Xc=1/2*π*f*C, где:

  • Xc – ёмкостное сопротивление;
  • π – число «пи» (3,14);
  • f – частота сети (в розетке 50Гц);
  • С – ёмкость конденсатора.

Подключив конденсатор к сети, определить Хс можно двумя способами:

  • зная напряжение сети и ток, текущий в ней по закону Ома:
  • подключить последовательно с измеряемым элементом резистор 10 кОм, измерить напряжение на всех деталях, и по формуле Xc=(Ur*Uc)/R определяется ёмкостное сопротивление.

Проверка исправности тестером

Если необходимо проверить исправность электронного прибора, но нет возможности производить длительные измерения, то это можно сделать тестером или светодиодной прозвонкой. Для этого необходимо подключить тестер к выводам. На исправном устройстве во время зарядки тестер покажет цепь, а после её завершения – обрыв. При изменении полярности время заряда увеличивается вдвое.

Знание того, как рассчитывается и проверяется ёмкость плоского конденсатора, необходимо при проектировании и ремонте электроприборов и электронной техники.

Видео

Темы кодификатора ЕГЭ : электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом - диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах - конденсаторах .

Но прежде введём понятие электрической ёмкости .

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым .

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду . Коэффициент пропорциональности принято обозначать , так что

Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

(1)

Например, потенциал уединённого шара в вакууме равен:

где - заряд шара, - его радиус. Отсюда ёмкость шара:

(2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:

Соответственно, ёмкость шара в раз увеличивается:

(3)

Увеличение ёмкости при наличии диэлектрика - важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В . Чем больше ёмкость - тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

МкФ.

Как видите, Ф - это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2) :

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

Так легче запомнить, не правда ли?

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости - но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор . Он состоит из двух параллельных металлических пластин (называемых обкладками ), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух

Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина - заряд положительной обкладки - называется зарядом конденсатора .

Пусть - площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

Здесь - напряжённость поля положительной обкладки, - напряженность поля отрицательной обкладки, - поверхностная плотность зарядов на обкладке:

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля имеем:

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

Внутри конденсатора поле удваивается:

(4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4) . Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты : поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

(5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

(6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6) , таким образом, является модификацией формулы (1) для случая системы двух проводников - конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора :

(7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:

(8)

Соответственно, напряжение на конденсаторе:

(9)

Отсюда ёмкость плоского конденсатора с диэлектриком :

(10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10) : заполнение конденсатора диэлектриком увеличивает его ёмкость .

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора - ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора , площадь обкладок .

Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

где - напряжённость поля первой обкладки:

Следовательно,

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила притяжения второй обкладки к первой складывается из всех этих сил , с которыми притягиваются к первой обкладке всевозможные маленькие заряды второй обкладки. При этом суммировании постоянный множитель вынесется за скобку, а в скобке просуммируются все и дадут . В результате получим:

(11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины до конечной величины . Сила притяжения пластин совершает при этом работу:

Знак правильный: если пластины сближаются , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины class="tex" alt="(d_2 > d_1)"> , то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

Это можно переписать следующим образом:

(12)

Работа потенциальной силы притяжения обкладок оказалась равна изменению со знаком минус величины . Это как раз и означает, что - потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора .

Используя соотношение , из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

(13)

(14)

Особенно полезными являются формулы (12) и (14) .

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в раз, и вместо (11) получим:

При вычислении работы силы , как нетрудно видеть, величина войдёт в ёмкость , и формулы (12) - (14) останутся неизменными . Ёмкость конденсатора в них теперь будет выражаться по формуле (10) .

Итак, формулы (12) - (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

Но - объём конденсатора. Получаем:

(15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет - это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина - энергия единицы объёма поля - называется объёмной плотностью энергии . Из формулы (15) получим:

(16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:

(17)

(18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Что такое конденсатор

Определение

Напомним, что конденсатором называется совокупность двух любых проводников, (обкладок) заряды которых одинаковы по величине и противоположны по знаку.

Конфигурация конденсатора такова, что поле, которое создается зарядами, локализовано между обкладками. В общем случае электроемкость конденсатора равна:

где ${\varphi }_1-{\varphi }_2=U$ -- разность потенциалов обкладок, которую называют напряжением и обозначают $U$. Емкость по определению считается положительной величиной. Она зависит только от геометрии обкладок конденсатора их взаиморасположения и диэлектрика. Форму обкладок и их расположение подбирают так, чтобы внешние поля минимально влияли на внутреннее поле конденсатора. Силовые линии поля конденсатора начинались на проводнике с положительным зарядом и заканчивались на проводнике с отрицательным зарядом. Конденсатор может быть проводником, который помещен в полость, окруженную замкнутой оболочкой.

В соответствии с конфигураций конденсаторов можно выделить три большие группы: плоские, сферические и цилиндрические (по форме обкладок). Вычисление емкости конденсатора сводится к определению $напряжения$ конденсатора при известном заряде на его обкладках.

Плоский конденсатор

Плоский конденсатор (рис.1) - это две разноименно заряженные пластины, разделенные тонким слоем диэлектрика. Формула для расчета емкости такого конденсатора представляет собой выражение:

\[С=\frac{\varepsilon {\varepsilon }_0S}{d}\left(2\right),\]

где $S$ -- площадь обкладки, $d$ -- расстояние между обкладками, $\varepsilon $ -- диэлектрическая проницаемость вещества. Чем меньше $d$, тем больше совпадает расчётная емкость конденсатора (2), с реальной емкостью.

Электроемкость плоского конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равна $d_i$, диэлектрическая проницаемость этого слоя ${\varepsilon }_i$ вычисляется по формуле:

Сферический конденсатор

В том случае, если внутренний проводник шар или сфера, внешняя замкнутая оболочка -- концентрическая ему сфера, то конденсатор является сферическим. Сферический конденсатор (рис.2) состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком. Емкость его можно рассчитать по формуле:

где $R_1{\ и\ R}_2$ -- радиусы обкладок.

Цилиндрический конденсатор

Емкость цилиндрического конденсатора равна:

где $l$ - высота цилиндров, $R_1$ и $R_2$ -- радиусы обкладок. Этот вид конденсаторов представляет собой две коаксиальных (соосных) проводящих цилиндрических поверхности (рис.3).

Еще одной, но не маловажной характеристикой всех конденсаторов является пробивное напряжение ($U_{max}$)-- это напряжение, при котором происходит электрический разряд через слой диэлектрика. $U_{max}$ зависит от толщины слоя и свойств диэлектрика, конфигурации конденсатора.

Помимо одиночных конденсаторов применяют их соединения. Для того чтобы увеличить емкость используют параллельное соединение конденсаторов (соединение одноименными обкладками). В этом случае результирующая емкость такого соединения может быть найдена как сумма${\ С}_i$ где $С_i$ -- емкость конденсатора с номером i:

Если конденсаторы соединить последовательно (обкладками с разными знаками заряда), то суммарная емкость соединения будет всегда меньше, чем минимальная емкость любого конденсатора, который входит в систему. В этом случаем для того чтобы рассчитать результирующую емкость складывают величины, обратные к емкостям отдельных конденсаторов:

\[\frac{1}{C}=\sum\limits^N_{i=1}{{\frac{1}{C_i}}_i}\left(7\right).\]

Пример 1

Задание: Вычислите электроемкость плоского конденсатора, если площадь обкладок его равна 1см2, расстояние между обкладками равно 1 мм. Пространство между обкладками вакуумировано.

Формула для расчета емкости, данного в задаче конденсатора имеет вид:

\[С=\frac{{\varepsilon }_0\varepsilon S}{d}\left(1.1\right),\]

где $\varepsilon =1$, ${\varepsilon }_0=8,85\cdot 10^{-12}\frac{Ф}{м}$. $S=1см^2=10^{-4}м^2$, $d=1мм=10^{-3}м.$

Проведем вычисления:

\[С=\frac{8,85\cdot 10^{-12}\cdot 10^{-4}}{10^{-3}}=8,85\cdot 10^{-13}\ \left(Ф\right).\]

Ответ: С $\approx $0,9 пФ.

Пример 2

Задание: Какова напряженность электростатического поля сферического конденсатора на расстоянии x=1 см=${10}^{-2}м$ от поверхности внутренней обкладки, если внутренний радиус обкладки конденсатора $R_1=$1 см${=10}^{-2}м$, внешний $R_2=$ 3 см=${3\cdot 10}^{-2}м$. Напряжение на обкладках равно ${10}^3В$.

Напряженность поля, которое создается проводящей заряженной сферой, вычисляется в соответствии с формулой:

где $q$ - заряд внутренней сферы (обкладки конденсатора), $r=R_1+x$ --расстояние от центра сферы.

Заряд сферы найдем из определения емкости конденсатора (С):

Емкость сферического конденсатора определяется как:

где $R_1{\ и\ R}_2$ -- радиусы обкладок конденсатора.

Подставим выражения (2.2) и (2.3) в (2.1), получим искомую напряженность:

Так как все данные в задаче уже переведены в систему СИ, проведем вычисления:

Ответ: $E=3,75\cdot {10}^4\frac{В}{м}.$

© ebergardt.ru, 2024
Строим вместе