Натриевая лампа схема подключения. Схема подключения лампы днат. Что учитывается при составлении рейтинга казино

25.02.2024

“Marijuana Grower"s Handbook”, если кто не знает) дуговые лампы (по-английски - HID) светят в два раза эффективнее, чем лампы дневного света той же мощности - это объясняется маленькими размерами излучателя, свет от которого гораздо легче направляется в нужную сторону и прочими особенностями конструкции. Поскольку ЛДС излучает по всей поверхности, сконструировать для них достаточно эффективный отражатель сложнее, размер же и расход материала будут гораздо больше. Кроме того с помощью дуговых ламп можно создать значительно большую освещенность. Потолок ее для ламп дневного света составляет 40-50 ватт на кв. фут, а с помощью HID можно без особых проблем добиться в 2-3 раза большей!Для растений (в частности, конопли) подходят две разновидности ламп класса HID - натриевые высокого давления (HPS или ДНаТ) и металл-галидные (MH, отечественный представитель - ДРИ, ртутно-иодная). С точки зрения человека натриевые лампы на 10% эффективнее металл-галидных, но с точки зрения растений - наоборот, поскольку людям и растениям нужны совершенно разные участки спектра. Вопрос этот вообще-то немного спорный, и каждый второй источник утверждает по-своему. Поскольку натриевые лампы применяются (у нас по крайней мере) гораздо шире металл-галидных, то основное внимание будет уделяться именно им. Общие рекомендации одинаково справедливы для обоих типов ламп, отличаются только электрическая часть и методы устранения неполадок.

С экономической точки зрения они также гораздо выгоднее - менять лампы рекомендуется раз в полгода, а одна ДНаТ-400 успешно заменяет 15..20 ЛДС по 40 ватт. Кроме того стoит вспомнить о балластах - гораздо удобнее работать с одним среднего размера чем с пятнадцатью маленькими. Поскольку как уже говорилось электроэнергия используется дуговыми лампами вдвое эффективнее чем ЛДС, то при их использовании тот же результат получается при вдвое меньшем ее расходе. Эти лампы можно использовать даже для очень маленьких плантаций - самая маломощная ДНаТ на 70 ватт как раз подойдет для площади 1-2 кв. фута. На Рис. 3 изображена конструкция одного западного товарища, использующего метод ScrOG. Для освещения применена лампа HPS на 150 ватт, рефлектор закрыт стеклом для задержания лишних тепловых лучей. Площадь сетки с шишками - 3 кв. фута, возраст клонов - 30 (!) дней, сорт C99. Как видите, даже с далеко не идеальным рефлектором результаты просто поражают воображение!

Как они работают?

Внутри внешнего стеклянного баллона ДНаТ"а находится «горелка» - трубка из алюминиевой керамики заполненная разреженным газом, в котором между двух электродов создается электрический разряд (дуга). В горелку также вводится ртуть и натрий (в ДРИ вместо натрия применяются галиды различных металлов, и горелка делается из кварцевого стекла) Для ограничения тока дуги используется специальный индуктивный (дроссель) или электронный балласт. Для зажигания холодной лампы напряжения сети недостаточно, поэтому необходимо использовать специальное импульсное зажигающее устройство - ИЗУ. Сразу же после включения оно генерирует импульсы напряжением несколько тысяч вольт, которые гарантированно пробивают лампу и создают дугу. «Натриевыми» лампы ДНаТ называют за то, что основной поток излучения генерируется ионами натрия, поэтому их свет имеет характерную желтую окраску. При работе «горелка» разогревается до 1300 °C, поэтому для сохранения ее в целости из внешнего баллона откачан воздух. Внимание: у всех без исключения дуговых ламп температура баллона при работе превышает 100 °С! Без принудительного охлаждения температура рефлектора будет ненамного меньше. Сразу после возникновения дуги лампа светит очень слабо, вся энергия расходуется на прогрев горелки. По мере прогрева яркость растет и достигает нормального уровня через 5-10 минут.

Как их устанавливать?

Натриевым лампам, в отличие от металл-галидных абсолютно все равно в каком положении работать. На основании многолетнего опыта западные садоводы утверждают, что горизонтальное положение лампы является более эффективным чем вертикальное, поскольку основной поток света лампа излучает в стороны. По этой же причине лампа должна располагаться посреди плантации, причем ее ось должна быть направлена поперек (перпендикулярно длинной стороне) - таким образом обеспечивается наиболее равномерная освещенность всех растений. Поскольку балласт представляет собой достаточно тяжелую железяку, его лучше вынести в отдельный блок, тогда регулировать высоту лампы будет легче. Высота подвешивания выбирается экспериментальным путем, но будьте осторожны - если вы слишком опустите лампу она может сжечь верхушки растений!

Про ИЗУ и балласты

Самыми лучшими балластами для ДНаТ являются электронные, но из-за совершенно диких цен применяют их очень редко. Обычный дроссель украинского производства можно приобрести на фирме примерно за $10, если найти на базаре у алкашей - вдвое дешевле. В бывшем совке выпускается множество их модификаций и применять можно все - лишь бы дроссель был именно для ДНаТ и такой же мощности как и лампа. Ставить «родной» дроссель обязательно, в противном случае у лампы может в несколько раз сократится срок службы или катастрофически упасть светоотдача! Возможно также «мигание», когда лампа гаснет сразу же после прогрева, потом остывает и все начинается сначала...

Из отечественных ИЗУ самое удобное т.н. «УИЗУ», оно подходит для любой мощности лампы и работает со всеми балластами.

Кроме того подключение двумя проводами вместо обычных трех упрощает электрическую часть. При этом вы можете разместить УИЗУ как рядом с балластом, так и возле лампы, подключив непосредственно к ее контактам (см. схему ниже). При подключении УИЗУ полярность особой роли не играет, но рекомендуется чтобы красный («горячий») провод соединялся с балластом.

Соединения выполняются многожильным проводом достаточно большого сечения, сетевой шнур также должен быть рассчитан на большой ток. Настоятельно рекомендую ввести в эту схему предохранитель, в случае пробоя балласта он поможет предотвратить неприятные последствия - от выбивания пробок до пожара или взрыва лампы!

БЕЗОПАСНОСТЬ

Если вы собирали светильник сами - трижды убедитесь что схема абсолютна правильна! Если на вашем балласте не нарисована схема подключения, или количество ножек у балласта/ИЗУ не совпадает со схемой - проконсультируйтесь с продавцом этого барахла или опытным электриком. Последствия ошибки могут быть катастрофическими, начиная с выгорания любого из трех элементов схемы и заканчивая взрывом лампы (а стекло там толстое, да и осколки горелки с температурой больше тысячи градусов штука неприятная). Все электрические соединения выполняются толстым многожильным проводом, пайки должны быть надежными и без «соплей». Винты в соединительных колодках затягиваются плотно, но без чрезмерных усилий - чтоб не сломать колодку. Если на баллоне лампы имеется грязь, жир или что-то подобное то из-за неравномерного нагрева лампа может лопнуть (взорваться) сразу же после прогрева! Поэтому избегайте прикасаться к лампе руками и после установки ее в патрон на всякий случай протрите спиртом. Попадание капель воды или других жидкостей на включенную лампу вызывает взрыв со 100% вероятностью! При использовании вентилятора убедитесь что он вращается и дует воздух куда надо. Подвешивайте светильник надежно, чтобы избежать падения - он тяжелый и несколько растений сломает точно, еще и загореться, сука, может!

Несколько слов про электробезопасность... Исключите возможность попадания на балласт воды, уберите его подальше и подвесьте повыше! Провода должны иметь абсолютно целую изоляцию, лучше применить специальный провод для суровых условий. Помните, что в момент зажигания лампы ИЗУ вырабатывает импульсы очень высоко напряжения - может и не убъет но запомнится на всю жизнь Ж:0 Это кроме «обычных» 220 вольт, которые присутствуют по всей схеме. При ремонте (см. следующий раздел) некоторые измерения проводятся на включенном устройстве - ни в коем случае не делайте этого сами если у вас нет достаточного опыта работы с высоким напряжением!! Лучше раскошелится на поллитру для ближайшего электрика чем самому стать органическим удобрением

В процессе работы светильника хотя бы раз в месяц нужно стирать пыль с лампы и рефлектора и проверять состояние вентилятора. Лампы рекомендуется менять раз в 4-6 месяцев, поскольку к концу срока службы у них сильно падает светоотдача. И не опускайте лампу слишком низко, проверьте рукой температуру на уровне верхушек - сильного тепла быть не должно!

Если оно не работает?

По мере старения натриевые лампы приобретают мерзкую привычку «мигать» т.е. лампа включается, разогревается как обычно, потом вдруг гаснет и через минуту все повторяется. Если вы заметили за ней такое поведение - попробуйте поменять лампу. В случае если смена лампы не помогает - померяйте напряжение в сети, возможно оно ниже обычного... Если мигание происходит нерегулярно - возможно виноват плохой контакт или скачки напряжения в сети. Самая неприятная возможность - это замыкание между витками обмотки в балласте, тогда придется его менять. Иногда «мигают» и новые лампы, но у них это через несколько часов проходит.

Бывает, что после включения светильника слышно как трещит ИЗУ (т.е. напряжение есть), но лампа даже не пытается зажечься. Чаще всего это случается из-за пробоя с проводе, идущем от ИЗУ к лампе или говорит о полностью выгоревшей лампе, реже бывает виноват обрыв провода между балластом и фонарем или подгоревшее ИЗУ. Попробуйте сменить провод между ИЗУ и лампой. Обратите внимание на состояние контактов ИЗУ. Если не поможет - попробуйте поменять лампу. Если не помогает - отключите ИЗУ (иначе своими импульсами оно может сжечь вольтметр!) и померяйте напряжение на патроне лампы - у ДНаТ оно должно соответствовать сетевому. Если напряжение на патроне есть - меняйте ИЗУ.

Если же светильник вообще не подает признаков жизни: ИЗУ не жужжит, лампа не светится - скорее всего или выбило предохранитель или нарушен контакт в сетевом шнуре. Возможно виновато сгоревшее ИЗУ или обрыв обмотки в балласте - проверьте балласт как описано ниже, если он целый - меняйте ИЗУ.

Балласт проверяется обычным Ом метром. В норме сопротивление у них порядка 1-2 Ом. Если сопротивление значительно больше - значит или обрыв в обмотке или нарушен контакт между выводами обмотки и соединительной колодкой (попробуйте подтянуть винты). При меж витковом замыкании все сложнее - на сопротивление постоянному току оно влияет очень мало из-за чего трудно обнаруживается, при этом мощность на лампу поступает гораздо большая чем надо. Когда на лампе передоз по мощности - она быстро перегревается и гаснет, в результате наблюдается все то же «мигание».

Не спешите выкидывать убитую (по вашему мнению) запчасть, может проблема и не в ней.

Назначение устройства

Устройство предназначено для использования совместно с газоразрядными лампами, взамен балластных дросселей.

Традиционное использование дросселей, в качестве ограничителей тока, приводит к возникновению значительной величины реактивной и полной потребляемой от сети мощности. Так, при использовании дросселей для ламп ДРЛ-125 коэффициент реактивной мощности =0,55. Электронные балласты повышают коэффициент мощности более чем до 0,92 с учётом потерь на переходах полупроводниковых приборов и токоограничительных элементах схемы. Один из известных недостатков газоразрядных ламп высокого давления – это невозможность быстрого повторного включения. Часто, при кратковременных “скачках” напряжения сети лампы гаснут и приходится ожидать несколько минут для повторного включения ламп. Это происходит при работе электроинструмента, сварочного оборудования в одной сети с лампами. Использование электронного балласта устраняет этот недостаток, лампы продолжают работать при “просадках” напряжения. Если же лампа погасла, то повторное включение происходит несколько раньше, чем при работе с дросселем.

Лампы ДРЛ, ДНАТ, в отличие от газоразрядных ламп комнатного освещения, не теряют интенсивности свечения при низких температурах воздуха. Лично я использую указанные выше лампы для освещения гаража, они являются основным источником света зимой, когда лампы ЛБ, ЛД едва светятся.

Для меня использование электронного балласта стало особенно актуальным при непрерывном росте стоимости электроэнергии.

Принципиальная схема и детали

Поиск готовых схемных решений электронных балластов привёл меня в уныние и негодование. Несмотря на активное использование энергосберегающих ламп, схем простых балластов для ламп ДРЛ я не смог найти.

Статья описывает достоинства использования МОП – транзисторов в полумостовых преобразователях. Именно по такой схеме построен балласт, как и большинство используемых сейчас балластов в энергосберегающих лампах. Основной сложностью создания балласта является отсутствие информации о типах и размерах магнитопроводов для трансформатора и балластного дросселя. Указанный в статье тип сердечника не дает возможности определить магнитную проницаемость, форму и размеры, необходимую информацию найти не удалось. Моя статья поможет вам определиться в выборе материалов и использовать доступные детали. В балласте изменена схема запуска, так как в наличии не оказалось двуханодных динисторов на момент испытаний. Уменьшено количество элементов, отсутствует управление включением ламп при наступлении сумерек. Таким образом, схема максимально упрощена. Дальнейшее описание будет предполагать нумерацию элементов указанную на схеме:

Известно, что полумостовые преобразователи с индуктивной обратной связью работают в режиме насыщения трансформатора Т1, таким образом, частота переключения транзисторов будет зависима от совокупности сразу нескольких факторов: тока протекающего в цепи лампы, тока в цепях L1, R6, VD2, L2, R7, VD3. Ток в цепи лампы непосредственно зависит и от частоты работы преобразователи и от индуктивности обмотки L4 трансформатора Т2. Таким образом, при создании первого экземпляра устройства, однозначно определить необходимое количество витков трансформаторов сложно. Первые экземпляры балластов намерено были изготовлены с магнитопроводом трансформатора Т2 избыточного сечения, чтоб исключить его насыщение. После успешного запуска и испытаний были уточнены размеры трансформаторов, количество витков, величина немагнитного зазора.

Таким образом, для использования с лампами ДРЛ 125, в качестве Т2, подойдёт ферритовый броневой магнитопровод из двух чашек M2000НМ, диаметром 30мм. В качестве трансформатора Т1 применено кольцо М2000НМ 17х10х5. Обмотка L3 содержит – 2,5 витка монтажного провода поверх обмоток L1, L2 в которых по 20 витков провода ПЭВ 0,35. Обмотки L1, L2 наматываются одновременно в два провода. При этом обмотка L4 содержит 52 витка, L5 – 3 витка провода ПЭВ 0,62 Немагнитный зазор трансформатора Т2 около 0,6мм.

При использовании указанных материалов, частота работы преобразователя около 38кГц в начале “разгона” лампы, и около 67 кГц после выхода лампы в рабочий режим.

Так как балласты изготавливались из материалов, которые были в наличии, то следующий экземпляр отличался размером магнитопровода Т1. На этот раз использовалось кольцо вовсе неизвестной магнитной проницаемости с размерами 14х8х4,5. В качестве Т2, тот же магнитопровод из двух чашек 30мм.

Изменяя количество витков обмоток L1, L2 можно в значительной степени изменять частоту работы преобразователя, но при этом придется корректировать количество витков обмотки L4 трансформатора T2. Так второй экземпляр устройства настроен на частоту преобразования 50-75 кГц, при этом L1, L2 содержат по 10 витков, L3 – 1,5, а L4 всего 39 витков, того же провода, что и в первом балласте. Частоту преобразователя так же можно изменить используя стабилитроны VD2, VD3 на различные напряжения и резисторы R6, R7 разного сопротивления. Речь идет об изменении тока в указанных цепях, просто различными способами, наиболее удобными для конкретного случая. Не стоит забывать, что рабочий диапазон частот для материалов М2000НМ до 100кГц.

В качестве VD2, VD3 использованы импортные стабилитроны в стеклянном корпусе 12В, мощностью 1,2Вт, парами соединённые катодами. В качестве теплоотводов использованы радиаторы выходных транзисторов кадровой развёртки телевизоров 3УСЦТ.

На схеме в скобках указаны элементы, используемые в балластах для ламп ДНАТ 250, ДНАТ 400. В схеме можно использовать транзисторы, указанные в статье, файл которой прилагается. В моём случае использовались транзисторы от старых блоков питания компьютеров: 2SK1024 и 2SK2828 - для ламп ДРЛ125. Для ламп ДНАТ 250, ДНАТ 400, пришлось приобрести IRFP460.

В балластах для ламп ДНАТ кроме более мощных транзисторов необходимо применить теплоотвод большей площади. Вполне подходит радиатор охлаждения процессоров ПК размером 90х65х35. В схеме для ламп ДНАТ в качество стабилитронов VD2, VD3 используется по одному стабилитрону Д815Е без теплоотвода. Трасформатор Т1 намотан на кольце 30х20х6,5 мм. L1, L2 по 20 витков ПЭВ 0,35, L3 - 1,5 витка монтажного провода. Трансформатор Т2 выполнен на броневом магнитопроводе М2000НМ из двух чашек диаметром 50мм, с немагнитным зазором около 1мм. L4 cодержит 34 витка провода ПЭТВ 0,95, L5 – один виток того же провода (для ДНАТ 250). Частота работы при этом 14-20 кГц. Как уже было сказано выше, частоту преобразователя можно изменить различными способами, в том числе используя магнитопроводы разного размера для Т1. В данном случае столь крупное кольцо применено лишь по причине отсутствия в наличие другого подходящего по размерам. Необходимо заметить, что при применении колец меньшего размера следует контролировать температуру магнитопровода, в случае значительного нагрева изменить режим работы балласта, либо применить кольцо большего размера. При монтаже трансформатора Т1, подключать обмотки необходимо согласно рисунка.

Обмотки L1, L2 на рисунке изображены намотанными отдельно друг от друга лишь для более понятного считывания правила подключения обмоток. Под указанные элементы рассчитаны печатные платы на рисунке. Не крепить трансформатор Т2 к плате металлическими деталями через центральное отверстие!!! Мы делаем балласт, а не индукционную печь!

Настройка устройства

Настройка устройства заключается в подборе количества витков обмотки L4, для получения необходимого значения напряжения на лампе, после её прогрева. Так, для ламп ДРЛ 125, рабочим напряжением считается величина действующего напряжения 125В.

Большинство простых мультиметров не даст возможности измерить напряжение на лампе на частотах работы преобразователя. Для настройки лучше воспользоваться осциллографом. Современные осциллографы способны измерять действующее значение напряжения, в том числе с учётом формы сигнала. Если ваш осциллограф не имеет этой функции достаточно определить амплитудное значение напряжения. Так как напряжение на лампе близко по форме к синусоидальному, вычислить действующее (оно же эффективное или среднеквадратичное) значение напряжение можно умножив амплитудное значение на 0,7.

При настройке устройства было замечено, что лампы разных производителей требуют индивидуальной настройки балласта. Так, если балласт настроен для ламп ДРЛ 125 (8) «Лисма», то при использовании ламп ДРЛ 125 (6), напряжение на лампах после прогрева достигает лишь 80В вместо 125. В данном случае необходима настройка под указанный тип лампы. При настройке балластов под лампы ДНАТ 250 – 400 следует помнить, что их рабочее напряжение, после прогрева около 15мин, - 100В.

Убедитесь в работоспособности цепей защиты (VD5, R8, C3, VD6, R9, VT4), подачей переменного напряжения от внешнего источника. При достижении напряжения немногим более 32В балласт должен отключиться. В случае неисправности цепей защиты, при включении устройства без лампы или при выходе её из строя, возможен выход из строя конденсатора С4, так как на нем возникает значительное напряжение. Так конденсатор на 1кВ выходит из строя в течение пары секунд, это результат работы последовательно колебательного контура L4C4. Такая схемотехника позволяет использовать балласт для ламп ДНАТ без специального пускового устройства.

P.S. Со времени публикации статьи пришлось ответить на большое количество вопросов. Основная проблема при повторении конструкции это нагрев ключевых транзисторов и выход их из строя при использовании с лампами ДНАТ 250 - 400. Это происходит в случае, когда по причине использования различных ферромагнитных материалов рабочая частота устройства оказывается слишком низкой. Это приводит к насыщению L4, увеличению токов, перегрев транзисторов и выход их из строя. Чтоб гарантированно избежать указанных проблем необходимо контролировать частоту работы устройства. Предлагаю в устройствах с лампами более 200Вт повысить рабочую частоту путем установки не одного стабилитрона Д815Е, а двух включенных встречно в каждом плече преобразователя. Далее, уменьшить количество витков обмоток L1, L2 трансформатора Т1 до 16-18 витков. Желательно так же несколько увеличить сечение проводов этих обмоток, насколько позволит размер вашего кольца. При этом частота работы устройства повысится до 35кГц в начале "разгона" ламы до 50-55 кГц (для ДНАТ250) после выхода на рабочий режим. Соответственно придётся подобрать и количество витков L4. Для ДНАТ400 повышайте частоту до 50-80кГц (но не более 100кГц), или используйте для трансформатора Т2 два указанных магнитопровода. Не лишним будет и использование принудительного охлаждения радиатора с помощью небольшого кулера от РС, подключенного к сети, например по схеме в файле "Охлаждение.jpg"

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315Г

1 В блокнот
VT2, VT3 MOSFET-транзистор

IRFP460

2 2SK2828 В блокнот
VT3 MOSFET-транзистор

IRF630

1 В блокнот
VD1 Выпрямительный диод

GBL08

4 Или 4x1N5408 В блокнот
VD2, VD3 Стабилитрон

Д815Е

2 В блокнот
VD4, VD5 Выпрямительный диод

RGP10D

2 В блокнот
VD6 Динистор 1 В блокнот
С1 100 мкФ 400в 1 330 мкФ 400в В блокнот
С2 Конденсатор 0.15 мкФ 250в 1 В блокнот
С3 Электролитический конденсатор 10 мкФ 50в 1 В блокнот
С4 Конденсатор 0.01 мкФ 1600в 1 В блокнот
C5 Конденсатор 0.22 мкФ 400в 1 1 мкФ 400в В блокнот
R1 Термистор NTC 5D9 1

Среди всех ламп для искусственного освещения растений больше всего подойдет натриевая лампа, которая пользуется большой популярностью.

Такой источник света обладает высокой эффективностью, и является самым экономным и долговечным. Мощность ламп может составлять от 30 до 1000 Вт, в зависимости от сферы использования. Что касается срока эксплуатации, то ресурс ламп рассчитан на 25000 часов работы. Для большинства теплиц это выгодный вариант в плане экономии, так как освещать растения необходимо довольно длительное время, особенно зимой.

Большим спросом на рынке пользуются российские лампы Рефлакс, которые оснащаются встроенным отражателем. За счет этого свет направлен прямо на растения. Отражатель ламп Рефлакс обладает высоким КПД равным 95%, который сохраняется в течение всего периода эксплуатации. Что характерно, одна лампа Рефлакс, мощностью 70 Ватт, подвешенная на высоту полметра, способна осветить территорию площадью около 1,6 м2. А так как использование других источников света подразумевает большие затраты на электроэнергию, то использование ламп Рефлакс более рационально. Что касается габаритов, то Рефлакс имеет размеры 76×200 мм. Благодаря этому лампы Рефлакс лучше всего подходят владельцам теплиц.

Преимущества и недостатки натриевых ламп

Натриевая лампа имеет существенные преимущества:
Высокий КПД.
Стабильный поток света.
Высокая световая отдача примерно 160 лм/Вт.
Долго срок службы, который в 1,5 раза превышает период эксплуатации прочих подобных ламп.
Лампы имеют приятное золотисто-белое излучение.
Эффективная работа в условиях тумана.
За счет того, что дуговая лампа рефлакс 250 излучает красный спектр – это идеальный источник света для цветения растений, в том числе и плодоносящих. А наличие синего спектра свечения способствует их активному росту и развитию. Вдобавок лампы могут работать в широком диапазоне температуры – от -60 до +40 градусов.
Наряду с достоинствами, имеются и некоторые недостатки. Главный из них заключается в сложности подключения. Обычный способ здесь не подходит, и здесь существуют свои особенности. Среди других минусов можно выделить следующие:
Взрывоопасность.
Наличие ртути в устройстве лампы.
Долгое время включения, которое может составлять до 10 минут.
Не подходит при выращивании нецветущих либо зеленых овощных культур (редис, лук, салат).
Кроме того, если необходимо использовать натриевые лампы высокого давления мощностью 250 Ватт или более, необходимо позаботится об охлаждении, так как лампы сильно нагреваются. Хотя для теплиц большого размера этот недостаток может обернуться преимуществом, обеспечив растения дополнительным нагревом.

Принцип работы

По внешнему виду натриевые источники света немного похожи на лампы ДРЛ. Здесь также имеется стеклянная колба элиптической либо цилиндрической формы, внутри нее располагается разрядная трубка («горелка»), с каждой стороны которой находятся электроды. Эти выводы соединены с резьбовым цоколем. По причине того, что пары натрия оказывают сильное воздействие на стекло, этот материал не применим для изготовления «горелки». Ее изготавливают из поликора (поликристаллической окиси алюминия), что позволяет повысить устойчивость к парам натрия и пропускать до 90% видимого света. Лампа ДНаТ 400 имеет разрядную трубку с диаметром 7,5 мм и длиной 80 мм. Электроды трубки изготавливаются из молибдена.
Помимо паров натрия, состав разрядной трубки содержит аргон, чтобы облегчить запуск ламп, а также содержит ртуть или ксенон, что позволяет увеличить световую отдачу. «Горелка» при работе разогревается до 1300 °C и чтобы сохранить ее в целости, из колбы выкачан воздух. Однако сложно поддерживать вакуум пока работает лампа, так как воздух может проникнуть через отверстия. Поэтому для предотвращения этого используются специальные прокладки. Стоит отметить, что при работе лампы ее колба разогревается до 100 °C. При включении импульсного зажигающего устройства (ИЗУ) создается импульсное напряжение, в результате чего образуется дуга. Но первое время натриевые лампы ДНАТ рефлакс 250 светят еще слабо, так как вся энергия расходуется на разогрев трубки. Спустя 5 или 10 минут яркость освещения нормализуется.

Как подключить натриевую лампу

В силу особенности строения газоразрядных ламп не получится просто подключить их к бытовой электрической сети, так как имеющегося напряжения не хватает для запуска. Вдобавок нужно ограничить ток дуги. И натриевые лампы здесь не исключение. В связи с этим необходимо использовать в цепи пуско-регулирующий аппарат или сокращено ПРА. Они могут быть электромагнитными (ЭмПРА) либо электронными (ЭПРА). В практике западных стран такие устройства именуются балластами Magnetic Ballast (для ЭмПРА) и Digital Ballast (для ЭПРА). В некоторых случаях не обходится без применения импульсного зажигающего устройства или ИЗУ.
Использование ЭПРА для натриевых ламп 250 необходимо для их разогрева и дальнейшей бесперебойной работы. При этом на сам запуск затрачивается 3-5 минут, а полную мощность натриевые источники освещения набирают в течение еще 10 минут. Примечательно, что на момент запуска лампы ее номинальное напряжение увеличивается практически в 2 раза.

Устройство ПРА

Пускорегулирующий аппарат состоит из трех основных компонентов:
Индуктивного дросселя.
ИЗУ.
Фазокомпенсирующего конденсатора.
Дроссель служит для ограничения тока дуги и его мощность должна быть такой же, как и у используемой лампы. К примеру, если применяется лампа ДНаТ 250, то, соответственно, мощность дросселя тоже должна быть не меньше и не больше 250 Ватт. В последнее время схема подключения ламп зачастую включает однообмоточный дроссель, тогда как двухобмоточные уже морально устарели.
ИЗУ необходимо для повышения напряжения до нескольких киловольт с целью образования дуги. Мощность ИЗУ может лежать в пределах от 35 до 400 Ватт. Помимо этого, устройство может быть двухконтактного или трехконтактного исполнения. Причем использование трехконтактных ИЗУ предпочтительнее.
Что касается конденсатора, то это необязательная составляющая. Но его наличие дает определенные преимущества, так как позволяет снизить нагрузку на бытовую электросеть. В свою очередь, это снижает риск возникновения возгорания проводки к минимуму. Боле подробно будет рассказано ниже.

Схемы подключения ламп ДНаТ

В зависимости от того, какое ИЗУ используется (с двумя выводами или тремя), натриевые лампы высокого давления 250 Ватт могут подключаться по-разному. Более подробно это отражает схема, изображенная ниже.


Схема подключения натриевой лампы

Как можно видеть из рисунков подключение дросселя (балласта) осуществляется последовательно, а вот ИЗУ подключается в цепь параллельно.
Для своей работы натриевые лампы используют мощность реактивного характера. В связи с этим желательно чтобы схема подключения включала специальный конденсатор, который позволит подавить помехи и снизить силу пускового тока. Что в итоге продлевает срок службы ламп. Также этот элемент просто незаменим в случае отсутствия компенсатора фазы.
Как видно на первом рисунке наличие фазокомпенсирующего конденсатора показано пунктирной линией. Его подключение осуществляется параллельно источнику питания.
Главное, подобрать конденсатор оптимальной электроемкости. К примеру, при использовании той же лампы ДНаТ-250 его емкость должна составлять 35 мкф. Если в схеме присутствует лампа ДНаТ 400, тогда можно подобрать конденсатор чуть большей емкости – 45 мкф. Использовать в схеме допускается только сухие элементы и рассчитанные на напряжение не менее 250 В.
При самостоятельном подключении ламп стоит взять кое-что на заметку. Длина провода, соединяющего сам источник освещения и дроссель, не должна превышать одного метра.

Меры предосторожности

В силу конструктивных особенностей, которыми обладает натриевая газоразрядная лампа 250, при работе этих источников света необходимо соблюдать крайнюю осторожность. Недопустимо отключать лампу сразу же после ее включения. Она должна остаться включенной как минимум 1 или 2 минуты. В противном случае лампа перестанет вовсе включаться и тогда ее необходимо обесточить и подождать некоторое время.
В помещении, где работают лампы необходимо наличие качественной вентиляции. Ее температура во время работы может подниматься до 100 градусов и более. А согласно некоторым источникам и все 1000. Поэтому хорошая вентиляция – это залог продолжительной и безопасной работы источников освещения. Не стоит трогать руками лампы высокого давления во время работы во избежание ожогов. То же самое касается и ее отражателя.
При установке источников освещения не нужно браться за колбу голыми руками, лучше всего использовать перчатки из материи. Или можно обернуть ее какой-либо бумагой или картоном, чтобы не оставлять на стекле жирных отпечатков пальцев. Поскольку температура нагрева очень высокая, то любой жировой налет или даже капли воды могут привести к взрыву лампы. В интернете можно найти много информации по этому поводу.
Но сильно нагреваться могут не только лампы высокого давления, это касается и используемого балласта. Его температура может подниматься до 80-150 градусов. Поэтому в целях предосторожности следует этот элемент схемы изолировать, спрятав под огнеупорный и прочный корпус. Это позволит предотвратить попадание внутрь сухих листьев, кусочков ткани или бумаги и прочих предметов.
Не стоит забывать и про элементарную технику безопасности при работе с электричеством. То есть исключить любую вероятность попадания воды на балласт, следить за целостностью электропроводки. Стоит всегда помнить, что в момент, когда запускается лампа ДНаТ, ИЗУ вырабатываются импульсы высокого напряжения. Поэтому лучше всего использовать специальные провода, которые рассчитаны для работы в экстремальных условиях. Они как раз рассчитаны на сильный нагрев.

Утилизация

Натрий по своей природе является летучим веществом и, контактируя с воздухом, он может резко воспламениться. По этой причине натриевые источники освещения недопустимо выбрасывать как обычный мусор. Как и любая энергосберегающая лампа, которая содержит ртуть, их тоже нужно утилизировать в специальные емкости. Если самостоятельно выбросить натриевые лампы ДНаТ с соблюдением мер предосторожности не удается, следует вызвать специальную службу.

Здравствуйте, уважаемые читатели сайта «Заметки электрика».

Чтобы добраться до клеммника, необходимо отвернуть 2 болта с пластиковыми головками (барашки) и наклонить светильник.

Жилы питающего кабеля подключаются на клеммник светильника следующим образом:

Как видите, . Фазу (L) необходимо подключить на клемму с двумя отходящими белыми проводами, ноль (N) — с синим отходящим проводом, а защитный проводник (РЕ) — по центру.

А сейчас рассмотрим внутреннюю схему светильника ЖКУ.

Схема подключения светильника для натриевых ламп

Из-за особенностей конструкции и принципа действия натриевых ламп, при их подключении необходимы:

    пуско-регулирующий аппарат (ПРА), еще его называют дросселем или балластом

  • импульсно-зажигающее устройство (ИЗУ)
  • компенсирующий конденсатор

Существует две схемы подключения ламп ДНаТ:

В моем случае используется вторая схема:

Я специально на схеме выделил провода соответствующим цветом, которые Вы увидите на фотографиях ниже.

Элементы схемы

Рассмотрим все элементы, которые входят в данную схему:

1. ПРА (дроссель)

Вообще существует два вида ПРА (дросселей):

  • электромагнитные или индуктивные (ЭМПРА)
  • электронные (ЭПРА)

У каждого ПРА имеются свои, как достоинства, так и недостатки. Об этом я расскажу Вам в следующих своих статьях (чтобы не пропустить новые статьи — подписывайтесь на рассылку).

В рассматриваемом светильнике используется отечественный встраиваемый электромагнитный однообмоточный ПРА (дроссель) «Galad» 1И70ДНаТ46Н-666 УХЛ2. Он включается последовательно с лампой, тем самым ограничивая и стабилизируя ток ее потребления. Кстати, весит он 1,3 (кг) и его розничная цена составляет порядка 350-390 рублей.

Это я к тому, чтобы Вы ориентировались по ценам, вдруг придется менять его, ведь они частенько выходят из строя. Причин может быть несколько: межвитковое замыкание в обмотке, либо ее обрыв.

На корпусе дросселя изображена схема его подключения и некоторые характеристики.

  • мощность 70 (Вт)
  • напряжение 220 (В)
  • рабочий ток лампы 1 (А)
  • пусковой ток лампы не более 1,6 (А)
  • коэффициент мощности 0,38
  • ток, потребляемый из сети 0,54 (А)
  • максимальная допустимая температура обмотки в рабочем режиме 130°С

2. Импульсно-зажигающее устройство (ИЗУ)

ИЗУ бывают двух видов:

  • с тремя выводами
  • с двумя выводами

В нашем примере используется отечественное компактное ИЗУ-1М 35/70-3 от ООО «Ремар» с тремя выводами. Розничная цена составляет порядка 120-150 рублей.

ИЗУ необходимо для «пуска» лампы ДНаТ. При включении светильника в сеть, оно подает кратковременный высоковольтный импульс 1,8-2,5 (кВ), который обеспечивает пробой газового промежутка в колбе лампы.

Для ламп ДРЛ ИЗУ не требуется.

Схему подключения и некоторые характеристики можно увидеть на его корпусе.

  • напряжение 220 (В)
  • напряжение срабатывания 170-195 (В)
  • мощность лампы ДНаТ 35-70 (Вт)
  • параллельный тип подключения
  • амплитуда импульса 1,8-2,5 (кВ)
  • длительность импульса не менее 1,62 (мкс)

3. Конденсатор

Для повышения коэффициента мощности (косинуса «фи») светильника используют конденсатор. В моем случае это пленочный полипропиленовый конденсатор К78-99емкостью 10±10% (мкФ) напряжением 250 (В), который подключается параллельно питающей сети (прямо на клеммник).

До компенсации косинус светильника был равен 0,38, после компенсации — 0,85.

Для каждого типа дросселя необходима определенная емкость конденсаторов. Ее можно рассчитать по формулам самостоятельно, а можно воспользоваться специальными таблицами от производителей.

Обслуживание светильников с ДНаТ лампами

Если своевременно проводить техническое обслуживание светильников, то срок их службы будет соответствовать заявленному в паспорте. Необходимо всего лишь периодически выполнять следующие действия:

    проверять надежность контактных соединений в клеммнике, дросселя и ИЗУ

    очищать светильник от пыли и грязи

    если лампа ДНаТ сгорела, то на ее место устанавливать лампу аналогичной мощности, а не больше или меньше

P.S. На этом, пожалуй, все. Если есть вопросы по теме статьи, то готов ответить на них. Спасибо за внимание.

Натриевые лампы по сравнению с прочими источниками искусственного освещения, демонстрируют самый высокий КПД - близко 30%. Для экономии денежных средств рекомендуется покупать лампочки высокого давления. Свет, излучаемый натриевыми лампами высокого давления, позволяет практически во всем диапазоне различать цвета, исключая только коротковолновый, цвет в котором несколько тускнеет. Поговорим сегодня о возникновении, применении и подключении натриевых ламп своими руками.

Историческая справка

Самый большой вклад внесли в уличное освещение натриевые разрядные лампы высокого давления, которые являются основной помехой для астрономических наблюдений. Давайте углубимся в историю, чтобы понять, что они собой представляют. Трубчатые лампы, которые демонстрируют низкое давление ртути, были изобретены еще в предвоенный период.

Подобные люминесцентные лампы широкое распространение получили быстро. Но в парах натрия получить разряд не удавалось долгое время, это объяснялось низким парциальным давлением натрия при небольшой температуре. После комплекса технологических ухищрений были созданы натриевые лампы, которые работали при низком давлении. Но из-за сложной конструкции они не получили широкого распространения.

А вот судьба натриевых ламп, которые работают при высоком давлении, сложилась более удачно. Первоначальные заканчивались неудачей все попытки создания ламп в оболочке из кварцевого стекла. При высокой температуре повышается химическая активность натрия и как следствие - подвижность его атомов. Поэтому натрий в кварцевых горелках через кварц проникал быстро, разрушая оболочку.

Возникновение натриевых ламп

Ситуация кардинально измелилась в начале шестидесятых годов, когда компания “General Electric” запатентовала ранее не известный керамический материал, что способен работать в парах натрия при высокой температуре. Он получил наименование “лукалос”. В нашей стране эта керамика известна обитателям как “поликор”.

Данная керамика производится посредством высокотемпературного спекания окиси алюминия. Для светотехнических целей пригодной считается только одна модификация его кристаллической решетки - альфа-форма окиси, которая имеет в кристалле самую плотную упаковку атомов.


Процесс спекания такой керамики очень капризный, потому что она должна быть химически стойкой к парам натрия и должна иметь высокую прозрачность, чтобы в стенках разрядной трубки не терялась большая часть света. Пары натрия, которые служат газоразрядной средой в натриевых лампах, дают при свечении ярко-оранжевый свет. От присутствия в лампе натрия в обиход вошла аббревиатура ДНАТ, что означает дуговые натриевые лампы.

Достоинства и недостатки натриевых ламп

Натриевые лампы в два раза эффективнее светят, чем обыкновенные лампы дневного света аналогичной мощности - это можно объяснить маленькими размерами излучателя, световые лучи от которого намного легче направляются в нужную сторону и другими особенностями конструкции.

Кроме того с помощью натриевых дуговых ламп вы сможете воссоздать намного большую освещенность. Её потолок для приборов дневного света достигает 50 ватт на квадратный фут, а при помощи натриевых лам можно добиться без особых проблем в 3 раза большей!


С экономической точки зрения натриевые лампы выгоднее - менять их нужно только раз в полгода, а 1 лампа ДНаТ-400 сможет успешно заменить 20 ЛДС по 40 В. Также гораздо удобнее работать со средним балластом, чем с 15 маленькими. Так как электроэнергия используется натриевыми лампами вдвое эффективнее, то при их применении определенный результат достигается при вдвое меньших ее затратах.

Эффективность натриевых лампочек находится в прямой зависимости от температуры внешней среды, а это в свою очередь немного ограничивает их использование, потому что они хуже светят в холодную погоду. Также не совсем однозначен и тот факт, что они являются более экологичными, чем ртутные лампы, так как в большинстве натриевых светильников в качестве наполнителя применяется соединение натрия и ртути - амальгама натрия.

Использование натриевых ламп

Типичные объекты, где используются натриевые лампы: скоростные магистрали, улицы, площади, протяжные туннели, аэродромы, транспортные пересечения, спортивные сооружения, строительные площадки, аэропорты, вокзалы, архитектурные сооружения, складские и производственные помещения, пешеходные зоны и дороги, а также дополнительные источники освещения.

Если вы хотите свой приусадебный участок как-то украсить, то можно купить натриевые лампы, что нашли и в ландшафтном дизайне свое применение. Благодаря характеристикам натриевых ламп, теплому и яркому оранжевому свету их используют во вспомогательных целях для своеобразного декоративного эффекта, который имитирует открытое пламя или закат солнца.


Приобретение натриевых ламп нелишне, если хозяин выращивает рассаду, имеет зимний сад, теплицу или оранжерею. Безусловно, натриевые светильники естественного освещения и света солнца не заменят, но ваши растения никак от изменений погодных условий и пасмурных дней не будут зависеть при условии освещения цветов такими лампами.

Принцип работы натриевой лампы

Внутри внешнего баллона ДНаТ"а расположена «горелка» - трубка, что выполнена из алюминиевой керамики и заполнена разреженным газом, в котором создается между двух электродов электрическая дуга. В горелку вводится натрий и ртуть, а с целью ограничения тока используется индуктивный балласт или балласт электронный.

Для зажигания холодной натриевой лампы недостаточно напряжения сети, поэтому принцип работы натриевой лампы состоит в использовании специального ИЗУ - импульсного зажигающего устройства. Оно непосредственно после включения генерирует импульсы напряжением, которое составляет несколько тысяч вольт, что гарантированно создают дугу. Основной поток излучения генерируют ионы натрия, поэтому их свет отличается характерной желтой окраской.


Горелка разогревается при работе до 1300 градусов по Цельсию, поэтому откачан воздух из внешнего баллона для содержания ее в целости. У всех без исключения натриевых ламп при функционировании температура баллона превышает 100 градусов по Цельсию. Лампа светит слабо после возникновения дуги, вся энергия расходуется на нагрев горелки. Яркость растет по мере прогрева и через десять минут достигает нормального уровня.

Виды натриевых ламп

Если для вас более важной является экономичная работа света на протяжении долгого времени, то лучше всего приобрести натриевые светильники низкого давления, которые отличаются высокими показателями надежности в эксплуатации, светоотдачи в течение долгого времени и эффективности потребления энергии.

Натриевые лампы идеально подходят для организации освещения улиц, потому что способны излучать привычный для людей монохромный желтый цвет, но при этом не обладают достаточной передачей спектра света.

Для прочих целей использование лампочек низкого давления считается затруднительным, потому что цвета предметов, которые освещены такой лампой, невозможно различать. Цветовосприятие предметов в закрытом помещении искажается (к примеру, зеленый цвет преобразуется в темно-синий или черный), и теряется дизайнерский облик помещений.

Для экономии денежных средств рекомендуется покупать натриевые светильники высокого давления. Подключение натриевых ламп высокого давления подходит больше всего для спортивных залов, производственных и коммерческих комплексов. Свет, излучаемый натриевыми лампами высокого давления, позволяет цвета различать практически во всем диапазоне, кроме коротковолнового, в котором цвета могут несколько тускнеть.

Установка натриевых ламп

Натриевые лампы получили сегодня достаточно широкое применение в различных отраслях хозяйства, однако из-за недостаточной передачи спектра цвета, используются чаще всего в качестве уличного освещения. Натриевым лампочкам, в отличие от металл-галидных, без разницы, в каком положении функционировать.

Однако на основании многолетней практики считается, что более эффективно горизонтальное положение лампы, потому что она основной поток света излучает в стороны. Чтобы подключить любую газоразрядную лампу, требуется балласт. Натриевые лампы в этом смысле не являются исключением, балласт требуется для их «разогрева» и нормальной работы.

Пускорегулирующий аппарат

Для натриевых ламп балласт - это пускорегулирующий аппарат, электронный ПРА и импульсное зажигающее устройство. Несомненно, самыми лучшими ПРА считаются по праву электронные, которые имеют ряд преимуществ перед ПРА индуктивными, проигрывая последним по стоимости: в настоящее время их цена достаточно высока.

Самыми распространенными ПРА выступают балластные индуктивные дроссели, которые необходимы для ограничения и стабилизации тока. Необходимый балласт, который скоммутирован с лампой нужным образом, уже имеется в них, поэтому схема подключения натриевых ламп сводится исключительно к подаче на клеммы светильника питающего напряжения.


На сегодняшний день двухобмотчные дроссели являются устаревшими, поэтому стоит отдать предпочтение однообмоточным. Обычный дроссель отечественного производства можно купить на фирме приблизительно за 10 долларов, а на рынке - вдвое дешевле.

Он обязательно должен предназначаться именно для ДНаТ и иметь такую же мощность, как и лампа. Ставить необходимо «родной» дроссель, иначе у лампы может сократиться в несколько раз срок службы, или светоотдача катастрофически упадет. Также возможно «мигание», когда натриевая лампа гаснет непосредственно после прогрева, затем остывает, и все происходит сначала.

Импульсное зажигающее устройство

ИЗУ требуются, как было написано выше, для зажигания лампы. Производители ИЗУ выпускают устройства с 2 и 3 выводами, поэтому может несколько отличаться схема включения натриевой лампы. Но обычно она изображается на каждом корпусе ИЗУ. Из отечественных ИЗУ самым удобным является «УИЗУ», оно подходит для лампы любой мощности и способно работать со всеми балластами.


При этом можно расположить УИЗУ рядом с балластом и возле лампочки, подключив к ее контактам. Полярность при подключении УИЗУ не играет особой роли, но рекомендуется, чтобы «горячий» красный провод соединялся с балластом.

Помехоподавляющий конденсатор

Дуговые натриевые лампы являются потребителями реактивной мощности , поэтому есть смысл в некоторых случаях (при отсутствии фазокомпенсации) включить в схему натриевой лампы помехоподавляющий конденсатор С, который существенно снижает пусковой ток и предотвращает неприятные ситуации. Для дросселей ДНаТ-250 (3А) емкость конденсатора должна составлять 35 мкф, для дросселей ДНаТ-400 (4.4А) - достигать 45 мкф. Следует использовать конденсаторы сухого типа, номинальное напряжение которых 250 В.

Соединения принято выполнять толстым многожильным проводом большого сечения, сетевой кабель также должен рассчитывать на большой ток. Пайки делайте надежными. Винты затягивайте плотно, но без чрезмерного усилия - чтобы колодку не сломать.

При самостоятельном подключении натриевых ламп стоит учитывать такую рекомендацию - нельзя допускать превышения длины проводов, которые соединяют балласт с натриевой лампой больше одного метра.

Вопросы безопасности

Если вы светильник собирали сами - убедитесь, что схема его подключения абсолютна правильна. Если схема подключения не нарисована на вашем балласте, или у балласта/ИЗУ количество ножек не совпадает со схемой - стоит проконсультироваться с продавцом этих деталей или опытным электриком. Последствия такой ошибки - катастрофические: выгорание одного из 3 элементов схемы, выбивание пробок, взрыв лампы и пожар.

Если на баллоне натриевой лампы имеется жир или грязь, то она может лопнуть из-за неравномерного нагрева сразу после прогрева. Поэтому не прикасайтесь к лампе руками и протирайте спиртом на всякий случай после установки в патрон. Если на включенную лампу попали капли воды или другие жидкости, то это провоцирует взрыв со 100% вероятностью!


Используя вентилятор, стоит проверить, что он дует и вращается, куда надо. Подвешивать светильник необходимо надежно с целью избегания падения - натриевая лампа тяжелая и может что-то сломать при падении. При ремонте лампы некоторые измерения следует проводить на включенном устройстве - не делайте этого самостоятельно, если вы не имеете достаточного опыта работы с аппаратами высокого напряжения.

В процессе работы натриевой лампы раз в месяц стирайте пыль со светильника и рефлектора и проверяйте состояние вентилятора. Натриевые лампы менять рекомендуется раз в 4-6 месяцев, так как к концу срока полезной службы у них значительно падает светоотдача.

Неисправности натриевых ламп

Натриевые лампы по мере старения приобретают привычку «мигать»: светильник включается, как обычно разогревается, потом гаснет неожиданно, и все повторяется через некоторое время. Если вы заметили за своей лампой такое поведение - стоит попробовать поменять лампочку. Если смена лампы не помогла - нужно измерить напряжение в сети, может, оно несколько ниже обычного.

Если мигание натриевой лампы происходит нерегулярно - причина кроется в плохом контакте или скачках напряжения в сети. Наиболее неприятной ситуацией является замыкание в балласте между витками обмотки, тогда его необходимо поменять. Иногда могут мигать и новые лампы, однако это проходит через несколько часов.

Зачастую слышно, как трещит ИЗУ после включения светильника (признак работы), но лампа зажечься даже не пытается. Это случается чаще всего из-за пробоев в проводе, который идет к лампе от ИЗУ, или говорит о выгоревшей лампе. Может быть виноватым обрыв провода между фонарем и балластом или подгоревшее ИЗУ.

Можете попробовать сменить провод между лампой и ИЗУ. Также стоит обратить внимание на контакты ИЗУ и их состояние. Если не поможет - поменяйте лампу. Если и это не поможет - отключите ИЗУ, потому что оно способно сжечь вольтметр своими импульсами, и померяйте на патроне лампы напряжение - оно должно у ДНаТ соответствовать сетевому. Если на патроне есть напряжение - меняйте ИЗУ.


Если же натриевая лампа признаков жизни вообще не подает: ИЗУ не жужжит, светильник не светится - скорее всего в сетевом шнуре нарушен контакт или выбило предохранитель. Может, сгорело ИЗУ, или произошел в балласте обрыв обмотки - проверьте балласт, если он целый - стоит поменять ИЗУ.

Балласт можно проверить обычным Ом-метром. У них нормальное сопротивление составляет 1-2 Ом. Если показатель значительно больше - значит, был обрыв в обмотке или нарушился контакт между соединительной колодкой и выводами обмотки (подтяните винты).

Все сложнее при межвитковом замыкании - оно влияет на сопротивление постоянному току очень мало, поэтому обнаруживается трудно, при этом на лампу поступает мощность больше, чем нужно. Когда на натриевой лампе передоз по мощности, то светильник перегревается быстро и гаснет, в итоге также может наблюдаться «мигание».

Теперь вы знаете, как подключить натриевую лампу! В заключение стоит отметить, что дуговые натриевые лампы представляют из себя одну из наиболее эффективных категорий источников видимого излучения, потому что характеризуются самой высокой отдачей света среди всех известных человечеству газоразрядных ламп и незначительным уменьшением светового потока при большом сроке полезной службы.

(322 votes, average: 4,83 out of 5)

Лампы ДНаТ: источник света, который слишком рано списали на пенсию.

Как мы и обещали, наконец созрела статья про лампы ДНаТ (Дуговая Натриевая Трубчатая высокого давления). Все, кто работал или работает в области светотехники, слышали об этом монстре. Но если кто не слышал, объясним на пальцах: лампы ДНаТ - это как автомат Калашникова для освещения улиц и досветки растений - проверенный временем и надежный, но не лишенный недостатков источник света.

Собственно, эта статья про лампы ДНаТ скорее для начинающих; материал, изложенный грамотно, но доступным языком: без принципиальных схем подключения и полной разблюдовки основ поддержания столба разряда в горелке лампы ДНаТ. Но и специалистам, мы уверены, набросок понравится.


Почти 100% автодорог мира (никто, конечно, не подсчитывал) до недавнего времени освещали лампы ДНаТ, пока их не начали выпиливать с опор в пользу светодиодных светильников . Однако, даже сейчас, бывалые проектировщики предпочитают от греха подальше впихнуть в проект натриевый светильник, ибо светодиодка 1. реально дороже, 2. не на столько уж энергоэффективней и 3. до сих пор непредсказуема, т.к. количество просто зашкаливает. Но об этом позже.


Лампы ДНаТ бывают разных мощностей - от 50 до 1000 Вт (редко, но встречаются мощностью 2000 и 4000 Вт), что как бы намекает на их «промышленное» применение, нежели «бытовое». В основном лампы ДНаТ используют в светильниках для освещения улиц и дорог, реже - на производствах в купе с источниками света белого света (например со светильниками на МГЛ для достижения более теплого света и большей энергоэффективности). В самых извращенных случаях их ставят на производство в чистом виде. И то - до первой травмы или звонка «куда следует».


Но самое незаменимое применение - освещение теплиц, или досветка растений (что, собственно, одно и то же, но второе - по-научному).

Терминология

Вот за что мы не любим Википедию, так за то, что там пишут либо поверхностно, и не понятно, либо занудно и со всеми подробностями - что для для непосвященных тоже не понятно. Самое обидное, что суть названия лампы ДНаТ в ней дают лишь в качестве расшифровки аббревиатуры, однако тут все намного интереснее.

Лампы ДНаТ во всем мире (кроме России) называют так, как они и должны называться - HPS Lamp (High-Pressure Sodium Lamp), то есть натриевые лампы высокого давления (НЛВД). Они у нас тоже так называются, но этот термин никто не использует. В Советском Союзе, когда только появились НЛВД, их стали производить различные заводы. Модификации и мощности были разные и их нужно было как-то отличать.


Различий действительно было много: форма (эллипсоидные/трубчатые) и прозрачность (матовые/прозрачные) колбы, мощность лампы (75/150/250/400/600/1000), наличие или отсутствие зеркального напыления в одной из полусфер. Так что и названий у НЛВД советского производства было много. Самыми распространенными стали лампы ДНаТ с различными приставками в виде мощности (150, 250 и т.д.).


Это было что-то вроде брендирования. Например сейчас в России существуют лампы ДНаТ-250 (с припиской, «такого-то производства»), а в Германии (да и во всем мире благодаря экспорту, маркетингу и качеству) существует лампа, например, VIALOX NAV-T 250 W SUPER 4Y производства Osram.


Так что по большому счету, лампы ДНаТ- это всего лишь разновидности модели лампы, а не тип источника света . А вот тип источника света - НЛВД, к которому относятся и лампы ДНаТ, и ДНаЗ (с зеркальным напылением) и даже ДНаС (со светорассеивающей колбой, чтоб меньше слепила). И, кроме специалистов, это мало кто знает. Вот так-то.


Кстати, если кому интересно, можно заглянуть в музей ламп (сайт на английском, но с кучей картинок) - здесь собрано бесчисленное количество различных ламп, в т.ч. и натриевых, за всю историю эпохи электрического освещения. Очень познавательно.

Устройство лампы ДНаТ

В принципе, лампы ДНаТ устроены не сложнее, чем любая газоразрядная лампа. Снаружи колба из термостройкого стекла и цоколь, внутри держатель горелки и сама горелка. Все.


Вот, собственно, и все устройство.

Подключение лампы ДНаТ

Подключение также примитивно до безобразия, как и устройство лампы. Так что мы не будем на этом долго останавливаться и лишь приведем одну из наиболее типовых схем подключения лампы ДНаТ.


Хотя тут стоит оговориться, что в действительности вариантов подключения лампы ДНаТ огромное множество. Обязательным компонентом подключения является также компенсирующий конденсатор. Как правило, схемы подключения указаны на блоках ИЗУ. Но на картинке выше приведен самый простой схематический вариант подключения.

Плюсы лампы ДНаТ

1. Энергоэффективность лампы ДНаТ

Этот источник света до сих пор считается одними из самых дешевых и энергоэффективных (2016 год). Да, да, не стоит делать такие глаза. Они вполне себе конкурируют со светодиодами, в т.ч. и по параметру лм/Вт. Так, с лучших представителей отрасли мощностью 250 Вт вполне можно снять до 130 лм/Вт (пруф). А со светильника - до 90…110 лм/Вт в зависимости от производителя, рассеивателя, отражателя, ПРА и качества питающей сети.


Интересно, что чем выше мощность и световой поток лампы ДНаТ, тем выше их светоотдача. К примеру, 50-ваттных ламп выше 80 лм/Вт почти не бывает. А вот с ДНаТ 1000 можно смело получить и 150 лм/Вт - жмяк. Еще раз - всего два года назад такие параметры светодиодам в массовом производстве и не снились.


Говорить просто о лампе без светильника не совсем корректно, т.к. только в нем можно увидеть все плюсы и минусы лампы ДНаТ. Энергоэффективность светильников с натриевыми лампами доходчиво иллюстрируют характеристики, заявленные производителями светильников на их же сайтах (редко когда врут). Но у нас есть и собственные, измеренные данные, полученные из лаборатории во время испытаний светильников для рейтинга:
- - 84 лм/Вт,
- с лампой GE - 81 лм/Вт,
- - 87 лм/Вт.
А вот теперь самое интересное. Если говорить о прямой замене, т.е. когда сняли старый натриевый светильник и на его место повесили новый светодиодный, - надо понимать, что светильник с лампой ДНаТ 150 Вт никогда не заменишь 50 или 70-ваттным светодиодным. То же самое касается 250 Вт натриевых светильников - их невозможно заменить светодиодкой 100 и даже 150 Вт (речь про рядовые светильники, а не про собранные на заказ с идеальными характеристикой и световой отдачей 150 лм/Вт со светового прибора) .

2. Цена лампы ДНаТ

Стоимость лампы ДНаТ варьируется от 300 до 10 000 рублей в зависимости от мощности, производителя, продавца и некоторых других переменных. Среднестатистическая лампочка мощностью 250 Вт стоит в районе 1000 рублей (±700). Но о цене абстрактной лампы ДНаТ тоже не совсем интересно говорить. Интересно говорить о стоимости лампы в составе светильника с ПРА (пуско-регулирующей аппаратурой), цоколем, защитным стеклом и т.д.

Вообще, лампа ДНаЗ, вместе с ее изобретателем, заслуживают отдельной статьи. И мы ее обязательно напишем. Нет. Серьезно. Кроме собственного сайта компании, об этой лампе почти не найдешь информации. Так что будем это исправлять.

Для подключения любых газоразрядных ламп необходим балласт. Не являются исключением, в этом смысле и натриевые лампы; для «разогрева» ламп при включении и нормальной их работы обязательно потребуется балласт. Балласт для натриевых ламп – это ПРА (пускорегулирующий аппарат) или ЭПРА (электронный ПРА) и ИЗУ (импульсное зажигающее устройство).

Наиболее распространенными ПРА для натриевых ламп являются балластные индуктивные дроссели, необходимые для стабилизации и ограничения тока. ИЗУ необходимо, как написано выше для «разогрева» – зажигания лампы. При включении натриевой лампы это устройство, представляющее собой небольшой блок, подает на ее электроды мощный импульс высокого напряжения, обеспечивающий пробой в газовой смеси колбы.

Cхемы подключения . Хотя, натриевые лампы сегодня получили довольно широкое применение в самых разных отраслях хозяйства, из-за недостаточной передачи цветового спектра, чаще всего используются в качестве уличного освещения.

Это «уличные» лампы, приходящие на смену ДРЛ , для которых выпускаются консольные светильники марки ЖКУ . Необходимый балласт, скоммутированный нужным образом с лампой в них уже имеется, поэтому, при использовании таких светильников, подключение сводится к лишь подаче питающего напряжения на клеммы светильника.

Чтобы самостоятельно собрать схему подключения натриевых ламп, потребуется, как написано выше балласт – дроссель и ИЗУ. Двухобмотчные дроссели, на сегодняшний день считаются устаревшими, поэтому, при выборе предпочтение стоит отдать однообмоточным.

Производителями ИЗУ выпускаются устройства с двумя и тремя выводами, поэтому, схема подключения может несколько отличаться – она, собственно, бывает изображена практически на каждом корпусе ИЗУ.


Натриевые лампы – потребители реактивной мощности, поэтому, в некоторых случаях, есть смысл при отсутствии фазокомпенсации в схему включить помехоподавляющий конденсатор С, существенно снижающий пусковой ток (см. фото выше).

Для дросселя ДНаТ-250 (3А) оптимальная емкость конденсатора – 35 мкф, для ДНаТ-400 (4.4А) – 45 мкф. Использовать следует конденсаторы сухого типа, с номинальное напряжением от 250 В. В этом случае схема подключения будет иметь следующий вид:

При самостоятельном подключении ламп, стоит учесть рекомендацию не допускать превышение длины проводов, соединяющих балласт с лампой более одного метра.

Напоследок, по поводу балласта. Несомненно, лучшими ПРА по праву считаются электронные, имеющие ряд преимуществ перед индуктивными ПРА, проигрывая, однако, последним по цене; их стоимость, в настоящее время достаточно высока.

Здравствуйте, уважаемые читатели сайта «Заметки электрика».

Чтобы добраться до клеммника, необходимо отвернуть 2 болта с пластиковыми головками (барашки) и наклонить светильник.



Жилы питающего кабеля подключаются на клеммник светильника следующим образом:


Как видите, . Фазу (L) необходимо подключить на клемму с двумя отходящими белыми проводами, ноль (N) - с синим отходящим проводом, а защитный проводник (РЕ) - по центру.

А сейчас рассмотрим внутреннюю схему светильника ЖКУ.

Схема подключения светильника для натриевых ламп

Из-за особенностей конструкции и принципа действия натриевых ламп, при их подключении необходимы:

    пуско-регулирующий аппарат (ПРА), еще его называют дросселем или балластом

  • импульсно-зажигающее устройство (ИЗУ)
  • компенсирующий конденсатор

Существует две схемы подключения ламп ДНаТ:


В моем случае используется вторая схема:


Я специально на схеме выделил провода соответствующим цветом, которые Вы увидите на фотографиях ниже.



Элементы схемы

Рассмотрим все элементы, которые входят в данную схему:

1. ПРА (дроссель)

Вообще существует два вида ПРА (дросселей):

  • электромагнитные или индуктивные (ЭМПРА)
  • электронные (ЭПРА)

У каждого ПРА имеются свои, как достоинства, так и недостатки. Об этом я расскажу Вам в следующих своих статьях (чтобы не пропустить новые статьи - подписывайтесь на рассылку).

В рассматриваемом светильнике используется отечественный встраиваемый электромагнитный однообмоточный ПРА (дроссель) «Galad» 1И70ДНаТ46Н-666 УХЛ2. Он включается последовательно с лампой, тем самым ограничивая и стабилизируя ток ее потребления. Кстати, весит он 1,3 (кг) и его розничная цена составляет порядка 350-390 рублей.

Это я к тому, чтобы Вы ориентировались по ценам, вдруг придется менять его, ведь они частенько выходят из строя. Причин может быть несколько: межвитковое замыкание в обмотке, либо ее обрыв.


На корпусе дросселя изображена схема его подключения и некоторые характеристики.

  • мощность 70 (Вт)
  • напряжение 220 (В)
  • рабочий ток лампы 1 (А)
  • пусковой ток лампы не более 1,6 (А)
  • коэффициент мощности 0,38
  • ток, потребляемый из сети 0,54 (А)
  • максимальная допустимая температура обмотки в рабочем режиме 130°С

2. Импульсно-зажигающее устройство (ИЗУ)

ИЗУ бывают двух видов:

  • с тремя выводами
  • с двумя выводами

В нашем примере используется отечественное компактное ИЗУ-1М 35/70-3 от ООО «Ремар» с тремя выводами. Розничная цена составляет порядка 120-150 рублей.


ИЗУ необходимо для «пуска» лампы ДНаТ. При включении светильника в сеть, оно подает кратковременный высоковольтный импульс 1,8-2,5 (кВ), который обеспечивает пробой газового промежутка в колбе лампы.

Для ламп ДРЛ ИЗУ не требуется.


Схему подключения и некоторые характеристики можно увидеть на его корпусе.

  • напряжение 220 (В)
  • напряжение срабатывания 170-195 (В)
  • мощность лампы ДНаТ 35-70 (Вт)
  • параллельный тип подключения
  • амплитуда импульса 1,8-2,5 (кВ)
  • длительность импульса не менее 1,62 (мкс)

3. Конденсатор

Для повышения коэффициента мощности (косинуса «фи») светильника используют конденсатор. В моем случае это пленочный полипропиленовый конденсатор К78-99емкостью 10±10% (мкФ) напряжением 250 (В), который подключается параллельно питающей сети (прямо на клеммник).

До компенсации косинус светильника был равен 0,38, после компенсации - 0,85.


Для каждого типа дросселя необходима определенная емкость конденсаторов. Ее можно рассчитать по формулам самостоятельно, а можно воспользоваться специальными таблицами от производителей.

Обслуживание светильников с ДНаТ лампами

Если своевременно проводить техническое обслуживание светильников, то срок их службы будет соответствовать заявленному в паспорте. Необходимо всего лишь периодически выполнять следующие действия:

    проверять надежность контактных соединений в клеммнике, дросселя и ИЗУ

    очищать светильник от пыли и грязи

    если лампа ДНаТ сгорела, то на ее место устанавливать лампу аналогичной мощности, а не больше или меньше

P.S. На этом, пожалуй, все. Если есть вопросы по теме статьи, то готов ответить на них. Спасибо за внимание.

В 2012 ООО «Новазавод» приступил к серийному выпуску ИЗУ для ламп ДнаТ и ДРИ (МГЛ). Линейка производимых ИЗУ покрывает все типы ламп, как по мощности: от 35Вт до 2000 Вт, так и по типу цоколя: Е27 и Е40.Так же выпускается специальная серия ИЗУ-Agro , предназначенные для запуска ламп ДнаЗ 400/600 Вт, широко используемых в тепличных хозяйствах и имеющих специфику «тугого розжига».

Соответствие ГОСТ Р МЭК 926-98, ГОСТ Р МЭК 927-98

Преимущества ИЗУ «Новазавод» по сравнению с производимыми аналогами:

  • использование компонентов ведущего мирового производителя NXP (Philips);
  • автоматический монтаж компонентов на плату на оборудовании MYDATA MY-9 (Швеция);
  • использование индуктивных компонентов, являющиеся «сердцем ИЗУ» фирмы EPCOS (TDK) с замкнутым контуром позволяет сделать калибровку по мощности ИЗУ с точностью до 5% для каждого вида ламп;
  • контроль амплитуды импульса и его форма ведется на осциллографе HP Hewlett-Packard.

Все вышеперечисленное, а так же практически отсутствующий «ручной труд» позволяет производить ИЗУ на уровне ведущих мировых аналогов с отказом 0,5% и гарантией 18 месяцев .

Идеальная форма импульса, скорректированная под каждый вид лампы, позволяет осуществлять режим «мягкого запуска» , что увеличивает срок жизни лампы до 2-х раз .

Пример обозначения ИЗУ для ДНаТ при заказе: ИЗУ-100/400 - Импульсное Зажигающее Устройство для ламп ДНаТ мощностью от 100 до 400 вт.

Прайс на продукцию на 30.08.2017 . Сертификат соответствия № РОСС RU. АВ86.Н01670

Цены действуют при долгосрочных поставках либо при единовременном заказе от 200 шт.

Тип лампы

Цена, руб. с НДС

Размер, Д*Ш*В/ вес, гр.

ИЗУ 35/70

ДНаТ/ДРИ 35-70 Вт

ИЗУ 100/400

ДНаТ/ДРИ 100/400 Вт.

ИЗУ 100/1000

ДНаТ/ДРИ 100/1000 Вт

ИЗУ 1000/2000

ДНаТ/ДРИ 1000/2000 Вт

ИЗУ Agro400/600

ДнаЗ 400/600 Вт

Импульсные зажигающие устройства - ИЗУ предназначены для поджига газоразрядных ламп высокого давления натриевых типа ДнаТ и металлогалогенных типа ДРИ (МГЛ) при включении их совместно с ПРА -индуктивным балластом. Существуют ИЗУ для работы с напряжением 220В и напряжением 380В (как правило для ламп мощностью свыше 1000 Вт). Мощность ламп ДнаТ, ДРИ от 35до 2000 Вт. Наиболее распространенные в уличном освещении: ИЗУ 250 для ламп ДнаТ , ДРИ: 100Вт-400 Вт., в тепличном освещении: ИЗУ 600 Вт - ИЗУ 1000 Вт. Как правило используются в, светильниках ЖСП, прожекторах с натриевой лампой

Обычно ИЗУ разделяют на три вида:
С двумя выводами, называемые еще параллельного типа, простейшая схемотехника,
изготавливаются с начала 80-х. - одновременно с появлением ламп ДНаТ, Схема подключения ИЗУ - рис.1 .Но несмотря на простоту и надежность таких ИЗУ, в них есть ряд проблем, которые не решаются в данных схемах:
-выход из строя ИЗУ при отсутствии лампы или если установлена перегоревшая лама.

Выход из стоя ПРА, т. к. импульсы от ИЗУ до 5 kV подаются непрерывно и обмотки
дросселя рано или поздно сгорают. Решение для защиты ПРА существует - установка
ПРА с термозащитой, но в связи с его дороговизной и отсутствием Российских ГОСТов
на его обязательную установку , ставят его крайне редко. Купить ИЗУ устаревшего типа проще, но это в дальнейшем скажется на затратах при обслуживании светильника в целом.
-Расстояние от ИЗУ до ПРА ограничено до 1-2 метров.

С тремя выводами ил «последовательного типа» .Схема подключения устройства ИЗУ последовательного типа приведено на рис.2. Преимущества:
работоспособность ИЗУ и ПРА при отсутствии либо сгорании лампы.
- Расстояние ИЗУ- неограничено.
Огромный минус: к концу срока жизни лампы начинает проявляться выпрямительный эффект, что ведет к аномальной работе ПРА, ИЗУ так же работает непрерывно, пытаясь зажечь лампу, что ведет к выходу из стоя всей системы ИЗУ- ПРА

Наиболее современные ИЗУ обоих типов имеют цифровой таймер, который отключает ИЗУ через заданное время в следующих случаях:

Лампа отсутствует

Лампа перегорела.

Безуспешная попытка зажечь старую, работающую в аномальном режиме лампу.

Цена ИЗУ в данном случае вырастает на 40-60% от цены обычных ИЗУ, но увеличение стоимости в абсолютном выражении на 30-50 руб.,ведет к колоссальному выигрышу в эксплуатации всей системы ПРА- ИЗУ - Лампа
Обычно ИЗУ разделяются по мощностям ламп: Например ИЗУ 400 - ИЗУ 600, а так же, наиболее современные, по типу цоколя лампы Е27 , Е14. Амплитуда импульсов колеблется от 2,5 kV до 5 kV в зависимости от типа цоколя и мощности лампы, что многократно увеличивает ее ресурс.

Суммарно все вышесказанное можно определить в виде:

ИЗУ разделяются на два типа: параллельного и последовательного

1 Импульсные зажигающие устройства ИЗУ для ДнаТ, ДРИ, ДНаЗ, ДРиЗ параллельного типа

Импульсные зажигающие устройства ИЗУ предназначены для зажигания разрядных ламп высокого давления типа ДнаТ (дуговая натриевая) , ДРИ (дуговая металлгалогенная)мощностью от 70 до 2000 Вт. Режим зажигания ламп обеспечивается ИЗУ при включении с с ЭмПРА - Электромагнитным Пуско-Регулирующим аппаратом, «дросселем» в сеть переменного тока номинальной частотой 50 Гц, 220-230В.

Отличительная особенность от устройств, которые представлены на рынке:

а) высокая зажигающая способность;

б) самая низкая стоимость обслуживания.

2. Импульсные зажигающие устройства ИЗУ для ДнаТ, ДРИ последовательного типа

Импульсные зажигающие устройства ИЗУпредназначены для зажигания разрядных ламп высокого давления типа ДНаТ, ДРИ мощностью от 70 до 1000 Вт. Режим зажигания ламп обеспечивается ИЗУ при включении с ЭмПРА - Электромагнитным Пуско-Регулирующим аппаратом, «дросселем» в сеть переменного тока номинальной частотой 50 Гц, 220-230В. Особенностью данного ИЗУ от представленных на рынке - использование сердечников для импульсных трансформаторов из специального сплава фирмы EPCOS, превышающего в разы аналогичные сердечники по техническим характеристикам.

© ebergardt.ru, 2024
Строим вместе