Расчет нагрузки электричества. Как рассчитать потребляемую мощность. Расчет нагрузки перекрытий

13.03.2024

Все пользователи электроприборов прежде, чем приобрести новое устройство, желают знать, как рассчитать потребляемую мощность. Это необходимо, чтобы спланировать нагрузку на домашнюю электросеть или конкретный источник питания. Также мощность – важнейший показатель для примерного расчета затрат на электроэнергию.

Формула для определения мощности

Первое, на что надо обратить внимание, – это паспортные данные приборов. Потребляемая мощность в ваттах может быть указана и на различных табличках, прикрепленных к устройствам.

Часто показатель мощности указывается в вольтамперах (В*А). Обычно это происходит, когда потребляемая прибором энергия имеет реактивную составляющую. Тогда обозначается полная мощность электрического устройства, а она измеряется в вольтамперах.

Но не всегда эта информация доступна. Тогда на помощь приходят простая формула и измерительные приборы.

Основная формула, с помощью которой ведется расчет потребляемой мощности:

P = I * U, то есть надо перемножить напряжение и ток.

Если в паспортных данных электроприбора нет мощности, но указан ток, то ее можно узнать по этой формуле. Допустим, устройство берет ток 1 А и работает от сети 220 В. Тогда P = U * I = 1 * 220 = 220 Вт.

Измерение мощности приборами

Если это обычный бытовой прибор, подключаемый в розетку, то питающее напряжение электрической сети известно – 220 В. При подсоединении к другим источникам питания берется их напряжение.

Сила тока может быть измерена:

  • токоизмерительными клещами;
  • используя тестер.

С помощью токоизмерительных клещей замеры проще, так как осуществляются бесконтактным способом на одном проводе, подходящем к нагрузке.

Существует два метода, как измерить мощность мультиметром:

  1. Включить его в режиме измерения силы тока последовательно с электроприбором и затем рассчитать мощность по формуле. Этот способ не всегда подходит, так как может не быть возможности разорвать цепь питания устройства для подключения мультиметра;
  2. Подсоединить мультиметр к устройству в режиме измерения сопротивления и затем определить ток по формуле I = U/R, зная напряжение. Затем посчитать мощность.

Важно! Если измеряется сила тока бытовых электроприборов, то тестер устанавливается на измерение переменного тока.

Измеритель мощности

Проблема точного расчета энергопотребления телевизора или дисплея компьютера сводится к качеству сборки экрана, энергосберегающим функциям и к шаблонам использования оборудования конкретным пользователем. Хороший способ точно узнать потребление конкретного электроприбора – использовать специальный ваттметр для измерений мощности бытовых устройств.

Этот измерительный прибор является недорогим, но безопасным и эффективным средством определить потребляемую мощность. Ваттметр подключается непосредственно в розетку, а затем в его розеточный вход включается электроприбор.

Измерение мощности с помощью электросчетчика

Для того чтобы узнать мощность электроприбора, пользуясь счетчиком, надо отсоединить от сети все остальные устройства и посмотреть на счетчик:

  1. Есть электронные приборы учета, которые сразу показывают, какова потребляемая мощность. Для этого надо просто воспользоваться соответствующими кнопками, найдя активную мощность;
  2. В других электросчетчиках мигающий индикатор позволяет подсчитать количество импульсов. Например, сосчитав их за 1 минуту, надо умножить полученную цифру на 60 (получится количество импульсов за час). На приборе должно быть указано значение imp/kW*h (3200 или другая цифра). Теперь количество импульсов за час делится на imp/kW*h, и получается мощность электроприбора;
  3. Если установлен индукционный счетчик, мощность рассчитывается в несколько этапов.

Расчет мощности потребления с помощью индукционного счетчика:

  • нужно найти на табло счетчика цифру, указывающую число оборотов диска, совершаемых за 1 кВт ч;
  • с помощью секундомера отсчитать, сколько вращений диск совершит за 15 секунд (можно взять и другой временной промежуток);
  • вычислить мощность по формуле P = (3600 x N х 1000)/(15 x n), где n – коэффициент, найденный на счетчике, N – сосчитанное число вращений диска, 15 – временной промежуток в секундах, который может быть представлен другой цифрой.

Пример. За 15 секунд диск совершил 5 вращений. Передаточный коэффициент электросчетчика – 1200. Тогда мощность будет равна:

P = (3600 x 5 х 1000)/(15 х 1200) = 1000 Вт.

Очевидно, что мощность приборов, рассчитанных на малое потребление, измерить, пользуясь индукционным счетчиком, почти невозможно. Слишком большая погрешность измерения. Если диск вращается очень медленно, невозможно корректно учесть часть оборота. На электронном счетчике результат будет немного точнее.

В сети существуют калькуляторы для расчета мощности, куда в соответствующие окна надо ввести значения токов и напряжений и получить высчитанное значение мощности. Иногда в поле калькулятора достаточно обозначить название электроприбора. Другой вариант – воспользоваться таблицами, где указаны средние значения потребляемых мощностей для различных электроприборов.

Потребляемая энергия

Потребляемая энергия тесно связана с мощностью. Она рассчитывается, исходя из мощности прибора, умноженной на время его работы. Это именно тот показатель, по которому судят о потребительских расходах на электроэнергию. Точное значение израсходованной мощности во всей квартире или доме за определенный временной промежуток укажут данные счетчика. Для того, чтобы продумать способы уменьшения этого расхода, служат замеры мощности конкретных электроприборов.

Способы экономии электроэнергии:

  1. По возможности постараться не использовать старые модели холодильников, телевизоров и других бытовых электроприборов, которые рассчитаны на значительно большее потребление;
  2. Заменить лампы накаливания на люминесцентные, а еще лучше – на светодиодные. Для сравнения: средняя лампа накаливания потребляет 60 Вт, люминесцентная – 15 Вт, а LED лампа – всего 8 Вт. При использовании 5 ламп разного типа в течение 3-х часов в день получается суточный расход: лампы накаливания – 0,900 кВт ч, люминесцентные – 0,225 кВт ч, LED лампы – 0,120 кВт ч. Экономия значительная;

Важно! Низкая мощность энергосберегающих ламп не означает плохого освещения. Их яркость практически соответствует более мощным аналогам ламп накаливания.

  1. Большинство дисплеев телевизоров и компьютеров потребляет от 0,1 до 3 Вт электроэнергии, даже находясь в спящем режиме. Поэтому важно отключать их от сети, когда приборы не используются длительное время.

Методы расчета мощности при помощи измерений тестером дадут величины приблизительные из-за недостаточного учета реактивного мощностного показателя в электросетях переменного тока. Самым точным является измерение потребляемой мощности ваттметром для бытового пользования.

Видео

Определение максимальных нагрузок методом коэффициента спроса

Этот метод является наиболее простым и сводится к подсчету максимальной активной нагрузки по формуле:

Метод коэффициента спроса может применяться для подсчета нагрузок по тем отдельным группам электроприемников, цехам и предприятиям в целом, для которых имеются данные о величине этого коэффициента (см. ).

При подсчете нагрузок по отдельным группам электроприемников этот метод рекомендуется применять для тех групп, электроприемники которых работают с постоянной загрузкой и с коэффициентом включения, равным (или близким) единице, как, например, электродвигатели насосов, вентиляторов и т. п.

По полученному для каждой группы электроприемников значению Р30 определяется реактивная нагрузка:

причем tanφ определяется по cosφ, характерному для данной группы электроприемников.

Затем производится раздельное суммирование активных и реактивных нагрузок и нахождение полной нагрузки:

Нагрузки ΣР30 и ΣQ30 представляют собой суммы максимумов по отдельным группам электроприемников, в то время как фактически следовало бы определять максимум суммы. Поэтому при определении нагрузок на участок сети с большим количеством разнородных групп электроприемников следует вводить коэффициент совмещения максимумов КΣ, т. е. принимать:

Величина КΣ лежит в пределах от 0,8 до 1, причем нижний предел принимается обычно при подсчетах нагрузок по всему предприятию в целом.

Для большой мощности, а также для электроприемников, редко или даже впервые встречающихся в проектной практике, коэффициенты спроса должны выявляться путем уточнения совместно с технологами фактических коэффициентов загрузки.

Определение максимальных нагрузок методом двухчленного выражения

Этот метод был предложен инж. Д. С. Лившицем первоначально для определения расчетных нагрузок для электродвигателей индивидуального привода металлообрабатывающих станков, а затем был распространен и на другие группы электроприемников.

По этому методу получасовой максимум активной нагрузки для группы электроприемников одинакового режима работы определяется из выражения:

где Руn - установленная мощность n наибольших по мощности электроприемников, b, с-коэффициенты, постоянные для той или иной группы электроприемников одинакового режима работы.

По физическому смыслу первый член расчетной формулы определяет среднюю мощность, а второй - дополнительную мощность, которая может иметь место в течение получаса в результате совпадения максимумов нагрузки отдельных электроприемников группы. Следовательно:

Отсюда следует, что при малых значениях Руп по сравнению с Ру, что имеет место при большом числе электроприемников более или менее одинаковой мощности, К30 ≈КИ, и вторым членом расчетной формулы можно в таких случаях пренебречь, приняв Р30 ≈ bРп ≈ Рср.см. Наоборот, при небольшом количестве электроприемников, особенно в том случае, если они резко различаются по мощности, влияние второго члена формулы становится весьма существенным.

Подсчеты по этому методу более громоздки, чем по методу коэффициента спроса. Поэтому применение метода двухчленного выражения оправдывает себя лишь для групп электроприемников, работающих с переменной загрузкой и с малыми коэффициентами включения, для которых коэффициенты спроса либо вообще отсутствуют, либо могут привести к ошибочным результатам. В частности, например, можно рекомендовать применение этого метода для электродвигателей металлообрабатывающих станков и для электропечей сопротивления небольших мощностей с периодической загрузкой изделий.

Методика определения по этому методу полной нагрузки S30 аналогична изложенной для метода коэффициента спроса.

Определение максимальных нагрузок методом эффективного числа электроприемников.

Под эффективным числом электроприемников понимается такое число приемников, равновеликих по мощности и однородных по режиму работы, которое обуславливает ту же величину расчетного максимума, что и группа приемников различных по мощности и режиму работы.

Эффективное число электроприемников определяется из выражения:

По величине n э и коэффициенту использования, соответствующему данной группе электроприемников, по справочным таблицам определяется коэффициент максимума КМ а затем и получасовой максимум активной нагрузки

Для подсчета нагрузки какой-либо одной группы электроприемников одинакового режима работы определение пэ имеет смысл только в том случае, если электроприемники, входящие в группу, значительно разняться по мощности.

При одинаковой мощности р электроприемников, входящих в группу

т. е. эффективное число электродвигателей равно фактическому. Поэтому при одинаковых или мало отличающихся мощностях электроприемников группы определение КМ рекомендуется производить по фактическому числу электроприемников.

При подсчете нагрузки для нескольких групп электроприемников приходится определять среднее значение коэффициента использования по формуле:

Метод эффективного числа электроприемников применим для любых групп электроприемников, в том числе и для электроприемников повторно-кратковременного режима работы. В последнем случае установленная мощность Ру приводится к ПВ= 100%, т. е. к длительному режиму работы.

Метод эффективного числа электроприемников лучше других методов тем, что в определении нагрузки участвует коэффициент максимума, являющийся функцией числа электроприемников. Иначе говоря, этим методом подсчитывается максимум суммы нагрузок отдельных групп, а не сумма максимумов, как это имеет место, например, при методе коэффициента спроса.

Чтобы подсчитать реактивную составляющую нагрузки Q30 по найденному значению Р30, необходимо определить tanφ. Для этой цели приходится подсчитывать среднесменные нагрузки по каждой группе электроприемников и определять tanφ из соотношения:

Возвращаясь к определению пэ, следует отметить, что при большом числе групп и различной мощности отдельных электроприемников в группах нахождение ΣРу2 оказывается практически неприемлемым. Поэтому применяют упрощенный метод определения пэ в зависимости от относительного значения аффективного числа электроприемников п"э = nэ/n.

Это число находят по справочным таблицам в зависимости от соотношений:

где n1 - число электроприемников, каждый из которых обладает мощностью, не меньшей половины мощности наиболее мощного электроприемника, ΣРупг1 - сумма установленных мощностей этих электроприемников, n - число всех электроприемников, ΣPу-сумма установленных мощностей всех электроприемников.

Определение максимальных нагрузок по удельным нормам расхода электроэнергии на единицу выпускаемой продукции

Располагая сведениями о плановой производительности предприятия, цеха или технологической группы приемников и об , можно подсчитать максимальную получасовую активную нагрузку по выражению,

где Wyд-удельный расход электроэнергии на тонну продукции, М- годовой выпуск продукции, Тм.а- годовое число часов использования максимума активной нагрузки.

При этом полную нагрузку определяют, исходя из средневзвешенного годового коэффициента мощности:

Этот метод подсчета может служить для ориентировочного определения нагрузок по предприятиям в целом или отдельным цехам, выпускающим законченную продукцию. Для подсчета нагрузок по отдельным участкам электрических сетей применение этого метода, как правило, оказывается невозможным.

Частные случаи определения максимальных нагрузок при числе электроприемников до пяти

Подсчет нагрузок групп с малым количеством электроприемников можно производить следующими упрощенными способами.

1. При наличии в группе двух или трех электроприемников можно за расчетную максимальную нагрузку принимать сумму номинальных мощностей электроприемников:

и, соответственно

Для электроприемников, однородных по типу, мощности и режиму работы, допустимо арифметическое сложение полных мощностей. Тогда,

2. При наличии в группе четырех - пяти однородных по типу, мощности и режиму работы электроприемников подсчет максимальной нагрузки можно производить, исходя из среднего коэффициента загрузки, и допускать в этом случае арифметическое сложение полных мощностей:

3. При том же числе разнотипных электроприемников за расчетную максимальную нагрузку следует принимать сумму произведений номинальных мощностей электроприемников и коэффициентов загрузки, характерных для этих электроприемников:

и, соответственно:

Определение максимальных нагрузок при наличии в группе, наряду с трехфазными, также однофазных электроприемников

Если суммарная установленная мощность стационарных и передвижных однофазных электроприемников не превышает 15% суммарной мощности трехфазных электроприемников, то всю нагрузку можно считать трехфазной, независимо от степени равномерности распределения однофазных нагрузок по фазам.

В противном случае, т. е. если суммарная установленная мощность однофазных электроприемников превышает 15% суммарной мощности трехфазных электроприемников, распределение однофазных нагрузок по фазам следует производить с таким расчетом, чтобы достигалась наибольшая степень равномерности.

Когда это удается, подсчет нагрузок можно производить обычным способом, если же нет, то подсчет следует вести для одной наиболее загруженной фазы. При этом возможны два случая:

1. все однофазные электроприемники включены на фазное напряжение,

2. в числе однофазных электроприемников имеются и такие, которые включены на линейное напряжение.

В первом случае за установленные мощности следует принимать у групп трехфазных электроприемников (если они имеются) одну треть их фактической мощности, у групп однофазных электроприемников - мощность, подключенную к наиболее загруженной фазе.

По полученным таким путем фазным мощностям подсчитывают любым из способов максимальную нагрузку наиболее загруженной фазы, а затем, умножая эту нагрузку на 3, определяют нагрузку трехфазной линии.

Во втором случае наиболее загруженную фазу можно определить только путем подсчета средних мощностей, для чего однофазные нагрузки, включенные на линейное напряжение, необходимо привести к соответствующим фазам.

Приведенную к фазе а активную мощность однофазных приемников, включенных, например, между фазами ab и ас, определяют по выражению:

Соответственно, реактивная мощность таких приемников

здесь Рab, Рас - мощности, присоединенные на линейное напряжение соответственно между фазами ab и ас, p(ab)a, p(ac)a, q(ab)a, q(ac)a, - коэффициенты приведения нагрузок, включенных на линейное напряжение, к фазе а.

Путем круговой перестановки индексов могут быть получены выражения для приведения мощности к любой фазе.

Расчет нагрузки на фундамент от будущего дома наряду с определением свойств грунта на участке застройки — это две первоочередные задачи, которые нужно выполнить при проектировании любого фундамента.

О приблизительной оценке характеристик несущих грунтов своими силами говорилось в статье . А здесь представлен калькулятор, с помощью которого можно определить общий вес строящегося дома. Полученный результат используется для расчёта параметров выбранного типа фундамента. Описание структуры и работы калькулятора приводится непосредственно под ним.

Работа с калькулятором

Шаг 1: Отмечаем имеющуюся у нас форму коробки дома. Есть два варианта: либо коробка дома имеет форму простого прямоугольника (квадрата), либо любую другую форму сложного многоугольника (в доме больше четырёх углов, имеются выступы, эркеры и т.п.).

При выборе первого варианта необходимо задать длину (А-В) и ширину (1-2) дома, при этом нужные для дальнейшего расчёта значения периметра наружных стен и площади дома в плане высчитываются автоматически.

При выборе же второго варианта периметр и площадь необходимо рассчитать самостоятельно (на бумажке), т.к варианты формы коробки дома очень разнообразны и у всех свои. Полученные цифры заносятся в калькулятор. Обращайте внимание на единицы измерения. Расчеты ведутся в метрах, в квадратных метрах и килограммах.

Шаг 2: Указываем параметры цоколя дома. Простыми словами, цоколь — это нижняя часть стен дома, возвышающаяся над уровнем грунта. Он может исполняться в нескольких вариантах:

  1. цоколь является верхней частью ленточного фундамента выступающей над уровнем грунта.
  2. цоколь является отдельной частью дома материал которой отличается и от материала фундамента и от материала стен, например, фундамент из монолитного бетона, стены из бруса, а цоколь из кирпича.
  3. цоколь выполняется из того же материала, что и наружные стены, но так как он часто облицовывается другими материалами нежели стены и не имеет внутренней отделки, поэтому мы считаем его отдельно.

В любом случае высоту цоколя отмеряйте от уровня грунта до уровня, на который ложится цокольное перекрытие.

Шаг 3: Указываем параметры наружных стен дома. Высота их отмеряется от верха цоколя до крыши либо до основания фронтона, так как отмечено на рисунке.

Суммарную площадь фронтонов также как и площадь оконных и дверных проёмов в наружных стенах необходимо рассчитать исходя из проекта самостоятельно и внести полученные значения в калькулятор.

В расчёт заложены среднестатистические цифры удельного веса оконных конструкций с двухкамерным стеклопакетом (35 кг/м²) и дверей (15 кг/м²).

Шаг 4: Указываем параметры перегородок в доме. В калькуляторе несущие и не несущие перегородки считаются отдельно. Сделано это специально, так как в большинстве случаев несущие перегородки более массивные (они воспринимают нагрузку от перекрытий или крыши). А не несущие перегородки являются просто ограждающими конструкциями и могут возводиться, к примеру, просто из гипсокартона.

Шаг 5: Указываем параметры крыши. В-первую очередь выбираем её форму и уже исходя из неё задаём нужные размеры. Для типовых крыш площади скатов и углы их наклона рассчитываются автоматически. Если же Ваша крыша имеет сложную конфигурацию, то площадь её скатов и угол их наклона, необходимые для дальнейших расчётов, придётся определять опять же самостоятельно на бумажке.

Вес кровельного покрытия в калькуляторе рассчитывается с учётом веса стропильной системы, принятого равным 25 кг/м².

Расчёт в калькуляторе производится на основании формулы (10.1) из СП 20.13330.2011 (Актуализированная версия СНиП 2.01.07-85*):

S 0 = 1,4 ∗ 0,7 ∗ c e ∗ c t ∗ μ ∗ S g ,

где 1,4 — коэффициент надёжности по снеговой нагрузке принятый по пункту (10.12);

0,7 — понижающий коэффициент зависящий от средней температуры в январе для данного региона. Данный коэффициент принимается равным единице при средней январской температуре выше -5º С. Но так как практически на всей территории нашей страны средние январские температуры ниже этой отметки (видно на карте 5 приложения Ж данного СНиПа), то в калькуляторе изменение коэффициента 0,7 на 1 не предусмотрено.

c e и c t — коэффициент, учитывающий снос снега и термический коэффициент. Их значения приняты равными единице для облегчения расчётов.

S g — вес снегового покрова на 1 м² горизонтальной проекции крыши, определяется исходя из выбранного нами снегового района по карте;

μ — коэффициент, значение которого зависит от угла наклона скатов крыши. При угле более 60º μ =0 (т.е. снеговая нагрузка вообще не учитывается). При угле менее 30º μ =1. При промежуточных значениях угла наклона скатов необходимо производить интерполяцию. В калькуляторе это делается на основании простой формулы:

μ = 2 — α/30 , где α — угол наклона скатов в градусах

Шаг 6: Указываем параметры перекрытий. Помимо веса самих конструкций в расчёт заложена эксплуатационная нагрузка равная 195 кг/м² для цокольного и межэтажных перекрытий и 90 кг/м² для чердачного перекрытия.

Внеся все исходные данные, нажмите кнопку «РАССЧИТАТЬ!». При каждом изменении какого-либо исходного значения для обновления результатов также нажимайте данную кнопку.

Обратите внимание! Ветровая нагрузка при сборе нагрузок на фундамент в малоэтажном строительстве не учитывается. Можно посмотреть пункт (10.14) СНиП 2.01.07-85* «Нагрузки и воздействия».

На сегодняшний день существует широкий ассортимент кабельной продукции, с поперечным сечением жил от 0,35 мм.кв. и выше.

Если неправильно выбрать сечение кабеля для бытовой проводки, то результат может иметь два итога:

  1. Чересчур толстая жила «ударит» по Вашему бюджету, т.к. ее погонный метр будет стоить дороже.
  2. При неподходящем диаметре проводника (меньшем, чем необходимо), жилы начнут нагреваться и плавить изоляцию, что вскоре приведет к и короткому замыканию.

Как Вы понимаете, и тот и другой итог неутешительный, поэтому перед и квартире необходимо правильно рассчитать сечение кабеля в зависимости от мощности, силы тока и длины линии. Сейчас мы подробно рассмотрим каждую из методик.

Расчет по мощности электроприборов

Для каждого кабеля есть определенная величина тока (мощности), которую он способен выдержать при работе электроприборов. Если ток (мощность), потребляемый всеми приборами, будет превышать допустимую величину для токопроводящей жилы, то в скором времени аварии не избежать.

Чтобы самостоятельно рассчитать мощность электроприборов в доме, необходимо на лист бумаги выписать характеристики каждого прибора отдельно (плиты, телевизора, светильников, пылесоса и т.д.). После этого все значения суммируются, и готовое число используется для выбора кабеля с жилами с оптимальной площадью поперечного сечения.

Формула расчета имеет вид:

Pобщ = (P1+P2+P3+…+Pn)*0.8,

Где: P1..Pn–мощность каждого прибора, кВт

Обращаем Ваше внимание на то, что получившееся число необходимо умножить на поправочный коэффициент – 0,8. Этот коэффициент обозначает, что из всех электроприборов одновременно работать будет только 80%. Такой расчет более логичный, потому что, к примеру, пылесосом либо феном Вы точно не будете пользоваться в течение длительного времени без перерыва.

Таблицы выбора сечения кабеля по мощности:

Это приведенные и упрощенные таблицы, более точные значения вы можете найти в п.1.3.10-1.3.11.

Как вы видите, для каждого определенного вида кабеля табличные значения имеют свои данные. Все что Вам нужно, это найти ближайшее значение мощности и посмотреть соответствующее сечение жил.

Чтобы Вы наглядно поняли, как правильно рассчитать кабель по мощности, приведем простой пример:

Мы подсчитали, что суммарная мощность всех электроприборов в квартире составляет 13 кВт. Данное значение необходимо умножить на коэффициент 0,8, что в результате даст 10,4 кВт действительной нагрузки. Далее в таблице ищем подходящее значение в колонке. Нас устраивает цифра «10,1» при однофазной сети (напряжение 220В) и «10,5», если сеть трехфазная.

Это значит, что нужно выбрать такое сечение жил кабеля, который будет питать все расчётные приборы – в квартире, комнате или каком-либо другом помещении. То есть такой расчёт нужно проводить для каждой розеточной группы, запитанной от одного кабеля, или для каждого прибора, если он запитан напрямую от щитка. В примере выше, мы привели расчет площади поперечного сечения жил вводного кабеля на весь дом или квартиру.

Итого, выбор сечения останавливаем на 6-миллиметровом проводнике при однофазной сети либо 1,5-миллиметровом при трехфазной сети. Как вы видите, все довольно просто и даже электрик-новичок справится с таким заданием самостоятельно!

Расчет по токовой нагрузке

Расчет сечения кабеля по току более точный, поэтому лучше всего пользоваться им. Суть аналогична, но только в данном случае необходимо определить токовую нагрузку на электропроводку. Для начала по формулам считаем силу тока по каждому из приборов.

Если в доме однофазная сеть, для расчета необходимо воспользоваться следующей формулой: Для трехфазной сети формула будет иметь вид: Где, P – мощность электроприбора, кВт

cos Фи- коэффициент мощности

Более подробно о формулах, связанных с вычислением мощности, можно прочитать в статье: .

Обращаем Ваше внимание на то, что от условий прокладки проводника будут зависеть значения табличных величин. При допустимые токовые нагрузки и мощность будут значительно большими, чем при .

Повторимся, любой расчет сечения проводится для конкретного прибора или их группы.

Таблица выбора сечения кабеля по току и мощности:

Расчет по длине

Ну и последний способ, позволяющий рассчитать сечение кабеля – по длине. Суть следующих вычислений заключается в том, что каждый проводник имеет свое сопротивление, которое с увеличением протяженности линии способствует (чем больше расстояние, тем больше и потери). В том случае, если величина потерь превысит отметку в 5%, необходимо выбрать проводник с жилами покрупнее.

Для вычислений используется следующая методика:

  • Нужно рассчитать суммарную мощность электроприборов и силу тока (выше мы предоставили соответствующие формулы).
  • Выполняется расчет сопротивления электропроводки. Формула имеет следующий вид: удельное сопротивление проводника (p) * длину (в метрах). Получившееся значение необходимо разделить на выбранное поперечное сечение кабеля.

R=(p*L)/S, где p — табличная величина

Обращаем Ваше внимание на то, что длина прохождения тока должна умножаться в два раза, т.к. ток изначально идет по одной жиле, а потом возвращается назад по другой.

  • Рассчитываются потери напряжения: сила тока умножается на рассчитанное сопротивление.

U потерь =I нагрузки *R провода

ПОТЕРИ=(U потерь /U ном)*100%

Один из основных параметров, определяющих стоимость кабеля – его сечение. Чем оно больше, тем выше его цена. Но если купить недорогой провод, сечение которого не соответствует нагрузкам в контуре, повышается плотность тока. Из-за этого увеличивается сопротивление и выделение тепловой энергии при прохождении электричества. Потери же электроэнергии возрастают, а эффективность системы снижается. На протяжении всего срока эксплуатации потребитель оплачивает значительные потери электроэнергии.

Но это не единственный минус установки кабеля с неправильно выбранным сечением. Из-за повышенного выделения тепла чрезмерно нагревается изоляция проводов – это сокращает срок использования проводов и нередко становится причиной короткого замыкания.

Расчет нагрузки на кабель позволяет:

  • Уменьшить счета за электроэнергию;
  • Увеличить срок службы проводки;
  • Снизить риск возникновения короткого замыкания.

Какие потери возникают при прохождении электрического тока?

При выполнении расчета нагрузки на кабель нужно учитывать:

1. Потери электрического тока при прохождении по проводам

Перемещение электричества от генератора тока к приемникам (бытовой технике, электрооборудованию, осветительным приборам) сопровождается высвобождением тепловой энергии. Этот физический процесс не приносит пользы. Выделяющееся тепло нагревает изоляционные оболочки, что приводит к сокращению срока их службы. Они становятся более хрупкими и быстро разрушаются. Нарушение целостности изоляции может стать причиной короткого замыкания при соприкосновении проводов друг с другом, а при контакте с человеком – опасной травмы.

Превращение электрической энергии в тепловую происходит из-за сопротивления, которое увеличивается по мере роста плотности проходящего тока. Эта величина рассчитывается по формуле:

Ј = I/S а/мм2

  • I – сила тока;

При монтаже внутренней электропроводки плотность тока должна быть не выше 6 А/мм2. Для других работ расчет сечения кабеля по току производится на основании таблиц, содержащихся в Правилах устройства и технической эксплуатации электроустановок (ПУЭ и ПТЭЭП).

Если рассчитанное значение плотности больше рекомендованного необходимо купить кабель с большим сечением провода. Несмотря на увеличение стоимости проводки, такое решение оправдано с экономической точки зрения. Выбор кабеля для проводки с оптимальным размером сечения в несколько раз увеличит ее срок безопасной эксплуатации и сократит потери электричества при прохождении по проводам.

2. Потери, возникающие из-за электрического сопротивления материалов

Сопротивление материалов, возникающее в процессе передачи электрического тока, приводит не только к выделению тепловой энергии и нагреву проводов. Также происходят потеря напряжения, что негативно сказывается на работе электрооборудования, бытовой техники и осветительных приборов.

При монтаже электропроводки необходимо рассчитать и величину сопротивления линии (Rл). Она рассчитывается по формуле:

  • ρ – удельное сопротивление материала, из которого изготовлен провод;
  • l – длина линии;
  • S – поперечное сечение провода.

Падение напряжения определяется как ΔUл = IRл, и его величина должна составлять не более 5% от исходного, а для осветительных нагрузок – не более 3%. Если же она больше, необходимо выбрать кабель с большим сечением или изготовленный из другого материала, с меньшим удельным сопротивлением. В большинстве случаев и с технической, и с экономической точки зрения целесообразно увеличить площадь сечения кабеля.

Выбор материала кабеля

Наш каталог кабельной продукции в Бресте включает большой выбор кабелей, изготовленных из различных материалов:

  • Медные

Медь имеет очень низкое удельное сопротивление (ниже только у золота), поэтому проводимость медных проводов значительно выше, чем у алюминиевых. Она не окисляется, что существенно увеличивает срок эффективной эксплуатации. Металл очень гибкий , кабель можно многократно складывать и сворачивать. Благодаря высокой пластичности возможно изготовление более тонких жил (изготавливаются медные жилы й от 0,3 мм2, минимальный размер алюминиевой жилы – 2,5 мм2).

Более низкое удельное сопротивление позволяет уменьшить выделение тепловой энергии при прохождении тока, поэтому при прокладке внутренней проводки в жилых помещениях разрешается использовать только медные провода.

  • Алюминиевые

Удельное сопротивление алюминия выше, чем у золота, меди и серебра, но ниже, чем у других металлов и сплавов.

Главное преимущество алюминиевого кабеля перед медным – его цена в несколько раз ниже. Также он значительно легче, что облегчает монтаж электросетей. При монтаже электросетей большой протяженностью эти характеристики имеют решающее значение.

Алюминий не подвержен коррозии, но при контакте с воздухом на его поверхности образовывается пленка. Она защищает металл от воздействия атмосферной влаги, но практически не проводит ток. Эта особенность осложняет соединение кабелей.

Основные виды расчета сечения

Расчет нагрузок на провод должен быть выполнен по всем значимым характеристикам:

По мощности

Определяется суммарная мощность всех приборов, потребляющих электроэнергию в доме, квартире, в производственном цеху. Потребляемая мощность бытовой техники и электрооборудования указывается производителем.

Также необходимо учесть электроэнергию, потребляемую осветительными приборами. Все электроприборы в домашних условиях редко работают одновременно, но расчет сечения кабеля по мощности выполняется с запасом, что позволяет сделать электропроводку более надежной и безопасной. Для промышленных объектов выполняется более сложный расчет с использованием коэффициентов спроса и одновременности.

По напряжению

Расчет сечения кабеля по напряжению производится исходя из вида электрической сети. Она может быть однофазной (в квартирах многоэтажных домов и большинстве индивидуальных коттеджей) и трехфазной (на предприятиях). Напряжение в однофазной сети составляет 220 В, в трехфазной – 380 В.

Если суммарная мощность электроприборов в квартире равна 15 кВт, то для однофазной проводки этот показатель и будет равен 15кВт, а для трехфазной он будет в 3 раза меньше – 5 кВт. Но при монтаже трехфазной проводки используется кабель с меньшим сечением, но содержащий не 3, а 5 жил.

По нагрузке

Расчет сечения кабеля по нагрузке также требует подсчета суммарной мощности электрооборудования . Желательно увеличить эту величину на 20-30%. Проводка выполняется на длительный срок, а количество бытовой техники в квартире или оборудования в цеху может увеличиться.

Затем следует определить, какое оборудование может быть включено одновременно. Этот показатель может существенно отличаться в разных домах. У одних большое количество бытовой техники или электрооборудования, которым пользуются несколько раз в месяц или в год. У других в доме – только необходимые, но часто используемые электроприборы.

В зависимости от величины коэффициента одновременности мощность может как незначительно, так и в несколько раз отличаться от нагрузки.

Установленная мощность (кВт) для кабелей, прокладываемых открыто
Сечение жил, мм2 Кабели с медными жилами Кабели с алюминиевыми жилами
Напряжение 220 В Напряжение 380 В Напряжение 220 В Напряжение 380 В
0,5 2,4 - - -
0,75 3,3 - - -
1 3,7 6,4 - -
1,5 5 8,7 - -
2 5,7 9,8 4,6 7,9
2,5 6,6 11 5,2 9,1
4 9 15 7 12
5 11 19 8,5 14
10 17 30 13 22
16 22 38 16 28
25 30 53 23 39
35 37 64 28 49
Установленная мощность (кВт) для кабелей, прокладываемых в штробе или трубе
Сечение жил, мм2 Кабели с медными жилами Кабели с алюминиевыми жилами
Напряжение 220 В Напряжение 380 В Напряжение 220 В Напряжение 380 В
1 3 5,3 - -
1,5 3,3 5,7 - -
2 4,1 7,2 3 5,3
2,5 4,6 7,9 3,5 6
4 5,9 10 4,6 7,9
5 7,4 12 5,7 9,8
10 11 19 8,3 14
16 17 30 12 20
25 22 38 14 24
35 29 51 16 -

По току

Для расчета номинального тока используется величина суммарной мощности нагрузки. Зная ее, максимально разрешенную нагрузку по току рассчитывают по формуле:

  • I – номинальн. ток;
  • P – суммарн. мощность;
  • U – напряжение;
  • cosφ – коэфф-т мощности.

На основании полученной величины находим оптимальный размер сечение кабеля в таблицах.

Допустимые токовые нагрузки для кабеля с медными жилами прокладываемого скрыто
Сечение жил, мм Медные жилы, провода и кабели
Напряжение 220 В Напряжение 380 В
1,5 19 16
2,5 27 25
4 38 30
6 46 40
10 70 50
16 85 75
25 115 90
35 135 115
50 175 145
70 215 180
95 260 220
120 300 260

Важные нюансы для правильного расчета нагрузки на кабель

© ebergardt.ru, 2024
Строим вместе