Расчет емкости балластного конденсатора для бестрансформаторного блока питания. Самодельный блок питания для светодиодной ленты. Переделка своими руками из старых БП Без трансформаторные бп

22.03.2024

Бестрансформаторные источники питания проще в изготовлении и дешевле, чем трансформаторные, однако они представляют определённую опасность для жизни человека при налаживании, ремонте и в эксплуатации. Неосторожное прикосновение одновременно ктоковедущей части и к заземлённой поверхности может окончиться весьма плачевно.

Схемы без гальванической развязки применяют в тех конструкциях, где не требуется постоянное присутствие человека или обеспечена надёжная изоляция от поражения током. Стоит отметить, что использовать такие источники питания целесообразно только при небольших токах нагрузки, так как в противном случае размеры и стоимость нужных компонентов растут очень быстро.

Различают следующие разновидности бестрансформаторных блоков питания:

  • с балластным резистором во входной цепи;
  • с балластным конденсатором во входной цепи;
  • с импульсным неизолированным AC/DC-преобразователем.

Балластными резисторами и конденсаторами гасится излишек сетевого напряжения. Соответственно резисторы должны быть рассчитаны на большую мощность рассеяния, а конденсаторы должны быть плёночными, например, К73-17, желательно с рабочим напряжением не менее 630 В. Запас нужен, потому что допустимое переменное напряжение КАС на частоте 50 Гц у данного класса конденсаторов значительно меньше допустимого постоянного напряжения KDC (Табл. 6.2).

Схемы балластного типа «не любят» частых включений/выключений, поскольку в начальный момент времени возникают всплески напряжения. Если имеется возможность, то лучше вообще обойтись без сетевого тумблера, что значительно продлит ресурс работы устройства. Оптимальная сфера применения балластных схем — маломощные приборы с круглосуточным режимом функционирования.

Импульсные сетевые бестрансформаторные преобразователи напряжения носят название AC/DC («переменное» АС в «постоянное» DC). Они обеспечивают высокий КПД и малые габариты, но генерируют импульсные помехи достаточно высокой частоты и амплитуды. Кроме того, микросхемы, применяемые в этих преобразователях, к числу дешёвых и широкораспространённых не относятся.

На Рис. 6.3, а...м показаны схемы бестрансформаторного питания с балластными резисторами и конденсаторами, а на Рис. 6.4, а...г — с микросхемами импульсных AC/DC-преобразователей.

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (начало):

а) диоды VD1...VD4 должны выдерживать обратное напряжение не менее 400 В. Резисторы Rl, R2 являются балластными для стабилитрона VD5. Сопротивление резистора R3 выбирается так, чтобы выходное напряжение не превышало +5.25 В при любом токе нагрузки. ФНЧ на элементах C1, R3, С2 сглаживает сетевые пульсации удвоенной частоты 100 Гц;

б) аналогично Рис. 6.3, а, но параллельные балластные резисторы заменяются последовательно включёнными резисторами RL..R3, RС-фильтр заменяется LC-фильтром LI, C1, а также добавляется предохранитель FUI. Максимально допустимый ток через дроссель LI должен быть с запасом больше, чем ток нагрузки;

в) полная классическая схема источника питания с балластным конденсатором C1. Резистор R1 ограничивает начальный ток заряда конденсатора С2 и является обязательным в подобных схемах. Резистор R2 быстро разряжает конденсатор C1 после отключения вилки от сети 220 В. Сборка диодов VD1 выпрямляет напряжение и может быть заменена двумя диодами типа 1 N4004... 1 N4007. Конденсатор С2 сглаживает сетевые пульсации, а конденсатор СЗ устраняет ВЧ-помехи. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

г) питание от трёхфазной сети через балластные резисторы RL..R3. Стабилитрон VD4 нужен, чтобы микросхема DA1 не вышла из строя от высокого входного напряжения при обрыве нагрузки в цепи +5 В или при резком снижении тока потребления;

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (продолжение):

д) стабилитроны VD3, VD4 имеют повышенную мощность рассеяния 1...3 Вт и выполняют предварительное ограничение напряжения. Стабилизатор на микросхеме DA I обеспечивает выходное напряжение;

е) двухполупериодный выпрямитель с диодным мостом VD1 и светодиодной индикацией наличия питания. Резистор R3 определяет ток в нагрузке, а также яркость свечения индикатора HLI. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

ж) двухполярный источник питания. Для полной симметрии схемы желательно обеспечить одинаковые токовые нагрузки по цепям +5 и -5 В;

з) разделение выходного напряжения на две отдельные ветви для исключения взаимных помех, например, для питания МК и для управление тиристором. Стабилитрон VD1 ограничивает напряжение на уровне +5.6 В. Диоды VD2, VD3 снижают его до +4.8...+5 В в каждом канале;

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (окончание):

и) получение двух напряжений от одного источника питания. Суммарный ток нагрузки состоит из суммы токов в каналах +9...+12 В и +5 В. При значительных колебаниях тока нагрузки следует выбрать стабилитрон VD3 с повышенной мощностью рассеяния 1...3 Вт;

к) стабилитроны VDI, VD2 одновременно служат стабилизаторами и выпрямителями. Стабилитроны следует выбирать мощные, с запасом по току;

л) вместо одного применяются два балластных конденсатора C1, С2, которые могут быть рассчитаны на меньшее допустимое напряжение;

м) в закрытом состоянии тиристора VS1 ток на бестрансформаторный стабилизатор напряжения (C1...CJ, RL..R3, VDI, VD2) проходит через нагрузку RH. Ввиду низкого значения тока, нагрузка не работает в полную мощность, например, лампа не светится, вентилятор не крутится и т.д. После включения тиристора VSI, в нагрузку RH подаётся полная мощность, а напряжение на выходе стабилизатора снижается с +5 до +2.7 В. Чтобы МК нормально функционировал, он должен быть широкодиапазонным по питанию и иметь возможность организации рестарта.

Рис. 6.4. Схемы сетевых бестрансформаторных блоков питаь с AC/DC-преобразователями:

а) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы ROHM;

б) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы Power Integrations. Дроссели LI, L2снижают уровень пульсаций;

в) формирователь двух популярных у радиолюбителей напряжений питания +5 и +3.3 В. Микросхема DA1 — это импульсный АC1DC-преобразователь напряжения фирмы Supertex;

т) DAI — это импульсный АC1DC-преобразователь напряжения фирмы Supertex. Общий ток нагрузки по выходам +18 и +5 В не должен превышать 40 мА.

Устройства на микроконтроллерах требуют для своей работы постоянного стабилизированного напряжения величиной 3.3 - 5 Вольт. Как правило, такое напряжение получают из переменного сетевого напряжения с помощью трансформаторного источника питания и в простейшем случае он представляет собой следующую схему.

Понижающий трансформатор, диодный мост, сглаживающий конденсатор и линейный/импульсный стабилизатор. Дополнительно такой источник может содержать в себе предохранитель, цепи фильтрации, схему плавного включения, схему защиты от перегрузки и т.д.
Данный источник питания (при соответствующем выборе компонентов) позволяет получать большие токи и имеет гальваническую развязку от сети переменного тока, что немаловажно для безопасной работы с устройством. Однако, такой источник может иметь большие габариты, благодаря трансформатору и фильтрующим конденсаторам.
В некоторых устройствах на микроконтроллерах гальванической развязки от сети не требуется. Например, если устройство представляет собой герметичный блок, с которым конечный пользователь никак не контактирует. В этом случае, если схема потребляет относительно невысокий ток (десятки миллиампер), ее можно запитать от сети 220 В с помощью бестрансформаторного источника питания.
В этой статье мы рассмотрим принцип работы такого источника питания, последовательность его расчета и практический пример использования.



Принцип работы бестрансформаторного источника питания

Резистор R1 разряжает конденсатор C1, когда схема отключена от сети. Это нужно для того, чтобы источник питания не ударил тебя током при прикосновении к входным контактам.
При подключении источника питания к сети, разряженный конденсатор C1 представляет из себя, грубо говоря, проводник и через стабилитрон VD1 кратковременно протекает огромный ток, способный вывести его из строя. Резистор R2 ограничивает бросок тока в момент включения устройства.


"Бросок тока" в начальный момент включения схемы. Синим цветом нарисовано сетевое напряжение, красным ток потребляемый источником питания. Для наглядности график тока увеличен в несколько раз.

Если ты подключишь схему к сети в момент перехода напряжения через ноль, броска тока не будет. Но какова вероятность, что у тебя это получится?
Любой конденсатор оказывает сопротивление протеканию переменного тока. (По постоянному току конденсатор представляет собой обрыв.) Величина этого сопротивления зависит от частоты входного напряжения и емкости конденсатора и может быть вычислена по формуле. Конденсатор С1 выполняет роль балластного сопротивления, на котором будет падать большая часть входного напряжения сети.

У тебя может возникнуть резонный вопрос: а почему нельзя поставить вместо C1 обычный резистор? Можно, но на нем будет рассеиваться мощность, в результате чего он будет греться. С конденсатором этого не происходит - активная мощность выделяемая на нем за один период сетевого напряжения равна нулю. В расчетах мы коснемся этого момента.

Итак, на конденсаторе C1 упадет часть входного напряжения. (Падение напряжения на резисторе R2 можно не учитывать, так как он имеет маленькое сопротивление.) Оставшееся напряжение окажется приложенным к стабилитрону VD1.
В положительный полупериод входное напряжение будет ограничиваться стабилитроном на уровне его номинального напряжения стабилизации. В отрицательный полупериод входное напряжение будет прикладываться к стабилитрону в прямом направлении и на стабилитроне будет напряжение примерно минус 0.7 Вольт.



Естественно такое пульсирующее напряжение не годится для запитывания микроконтроллера, поэтому после стабилитрона стоит цепочка из полупроводникового диода VD2 и электролитического конденсатора C2. Когда напряжение на стабилитроне положительное, через диод VD2 протекает ток. В этот момент заряжается конденсатор C2 и запитывается нагрузка. Когда напряжение на стабилитроне падает, диод VD2 запирается и конденсатор C2 отдает запасенную энергию в нагрузку.
Напряжение на конденсаторе C2 будет колебаться (пульсировать). В положительный полупериод сетевого напряжения оно будет расти до значения Uст минус напряжение на VD2, в отрицательный полупериод падать вследствие разряда на нагрузку. Амплитуда колебаний напряжения на C2 будет зависеть от его емкости и тока потребляемого нагрузкой. Чем больше емкость конденсатора C2 и чем меньше ток нагрузки, тем меньшей величины будут эти пульсации.
Если ток нагрузки и пульсации небольшие, то после конденсатора C2 уже можно ставить нагрузку, но для устройств на микроконтроллерах лучше все-таки использовать схему со стабилизатором. Если мы правильно рассчитаем номиналы всех компонентов, то на выходе стабилизатора получим постоянное напряжение.
Схему можно улучшить, добавив в нее диодный мост. Тогда источник питания будет использовать оба полупериода входного напряжения – и положительный, и отрицательный. Это позволит при меньшей емкости конденсатора C2 получить лучшие параметры по пульсациям. Диод между стабилитроном и конденсатором из этой схеме можно исключить.

Продолжение следует...

Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать питания на данное напряжение - 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах.

Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.


Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).


Если отсутствует выпрямительный диод 1N4007 , то его можно заменить на 1N5399 или 1N5408 , которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.


Резистор R1 взял на 5W, а R2 - на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.


Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А .


Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод - к минусу схемы.


Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно . Думаю вы поняли, что диоды без пометки - это 1n4007 .


Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!


На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.


Видео работы схемы бестрансформаторного БП

Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы.

Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи - egoruch72 .

Обсудить статью БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Для любых радиоэлектронных схем требуются источники питания . И если одно устройство может работать непосредственно от сети то для других необходимы другие напряжения: для цифровых микросхем как правило +5V (для ТТЛ логики) или +7..9V (для КМОП технологий).
Кстати, что это такое: ТТЛ и КМОП можно почитать
Для различных игрушек требуется обычно +5...12V. для питания светодиодов +3..+5V, для усилителей вообще многообразно..

В общем так или иначе возникает вопрос о изготовлении источника питания , причем не просто источника а такого чтобы он отвечал соответствующим требованиям: необходимые напряжение и ток на выходе, наличие защиты и так далее.

Источникам питания у нас посвящен отдельная категория, которая так и называется Источники питания (материалы в категории), здесь-же мы рассмотрим самый простейший вариант бестрансформаторного источника питания для простых изделий, который можно изготовить буквально за пару минут. Вот его схема:

Конечно мощность такого источника невелика и его можно использовать лишь для самых простых схем, но самое главное то что он стабилизированный.

Именно "+", микросхемы для отрицательного напряжения имеют маркировку 79XX.

На схеме указанной выше выходное напряжение составляет +5V (по типу примененной КРЕНки), но при необходимости его можно и изменить установив другую микросхему.
Только вот при этом потребуется обратить внимание и на стабилитрон на входе: его нужно выбирать таким чтобы напряжение на входе и выходе КРЕН имело разницу минимум в 2V.

Ну это еще не все: даже используя микросхему со стандартным выходным напряжением все равно при необходимости можно напряжение на выходе немного изменять (например получить 7,5V или 6,5). Для этого к микросхеме необходимо добавить дополнительный цепи из диодов или стабилитронов и как это сделать можно почитать .

Даже такой простой источник питания можно немного "умощнить", то есть добиться более высокого тока в нагрузке. Но тогда потребуется введение дополнительных балластных резисторов на входе. Так, к примеру, вот схема бестрансформаторного источника питания с выходным напряжением +12V

Питать низковольтную электро- и радиоаппаратуру выгоднее и проще от сети. Для этого наиболее приемлемы трансформаторные блоки питания, поскольку они безопасны в эксплуатации. Однако интерес к бестрансформаторным блокам питания (БТБП) со стабилизированным выходным напряжением не ослабевает. Одна из причин - сложность изготовления трансформатора. А вот для БТБП он не нужен - необходим лишь правильный расчет, но как раз это и пугает малоопытных начинающих электриков. Эта статья поможет сделать расчет и облегчит конструирование бестрансформаторного блока питания.

Упрощенная схема БПТП приведена на рис. 1. Диодный мост VD1 подключен к сети через гасящий конденсатор С гас, включенный последовательно с одной из диагоналей моста. Другая диагональ моста работает на нагрузку блока - резистор R н. Параллельно нагрузке подключены фильтрующий конденсатор С ф и стабилитрон VD2.

Расчет блока питания начинают с задания напряжения U н на нагрузке и силы тока I н. потребляемого нагрузкой. Чем больше будет емкость конденсатора С гас, тем выше энергетические возможности БПТП.

Расчет емкостного сопротивления

В таблице приведены данные по емкостному сопротивлению Х с конденсатора С гас на частоте 50 Гц и среднему значению тока I ср, пропускаемого конденсатором С гас, вычисленные для случая, когда R н =0, то есть при коротком замыкании нагрузки. (Ведь к этому аномальному режиму работы БТБП не чувствителен, и в этом еще одно огромное преимущество перед трансформаторными блоками питания.)

Иные значения емкостного сопротивления Х с (в килоомах) и среднего значения тока I ср (в миллиамперах) можно вычислить по формулам:


С гас - емкость гасящего конденсатора в микрофарадах.

Если исключить стабилитрон VD2, то напряжение U н на нагрузке и ток I н через нее будет зависеть от нагрузки R н. Подсчитать эти параметры легко по формулам:



U н - в вольтах, R н и Х н - в килоомах, I н - в миллиамперах, С гас - в микрофарадах. (Далее в формулах используются те же единицы измерения.)

С уменьшением сопротивления нагрузки напряжение на ней тоже уменьшается, причем по нелинейной зависимости. А вот ток, проходящий через нагрузку возрастает, правда, весьма незначительно. Так, например, уменьшение R н с 1 до 0,1 кОм (ровно в 10 раз) ведет к тому, что U н снижается в 9,53 раза, а ток через нагрузку увеличивается всего лишь в 1,05 раза. Эта "автоматическая" стабилизация тока выгодно отличает БТБП.от трансформаторных источников питания.

Мощность Р н на нагрузке, вычисляемая по формуле:



с уменьшением R н снижается почти столь же интенсивно, как и U н. Для того же примера потребляемая нагрузкой мощность уменьшается в 9,1 раза.

Поскольку ток I н нагрузки при сравнительно небольших значениях сопротивления R н и напряжения U н на ней меняется крайне мало, на практике вполне допустимо пользоваться приближенными формулами:



Восстановив стабилитрон VD2, получим стабилизацию напряжения U н на уровне U ст - значения практически постоянного для каждого конкретного стабилитрона. И при небольшой нагрузке (большом сопротивлении R н) станет выполняться равенство U н =U ст.

Расчет сопротивления нагрузки

До каких же пределов можно уменьшать R н, чтобы равенство U н =U ст было справедливо? До тех, пока выполняется неравенство:



Следовательно, если сопротивление нагрузки окажется меньше рассчитанного R н, напряжение на нагрузке уже не будет равно напряжению стабилизации, а окажется несколько меньше, поскольку ток через стабилитрон VD2 прекратится.


Расчет допустимого тока через стабилитрон

А теперь определим, какой ток I н будет течь через нагрузку R н и какой ток - через стабилитрон VD2. Понятно, что



По мере уменьшения сопротивления нагрузки потребляемая ею мощность P н =I н U н =U 2 ст /R н возрастает. А вот средняя потребляемая БПТП мощность, равная



остается неизменной. Объясняется это тем, что ток I ср разветвляется на два - I н и I ст - и, в зависимости от сопротивления нагрузки, перераспределяется между R н и стабилитроном VD2, причем так, что чем меньше сопротивление нагрузки R н, тем меньший ток идет через стабилитрон, и наоборот. Значит, если нагрузка мала (или вовсе отсутствует), стабилитрон VD2 будет находиться в наиболее тяжелых условиях. Вот почему снимать нагрузку с БПТП не рекомендуется, иначе весь ток пойдет через стабилитрон, что может привести к выходу его из строя.

Амплитудное значение напряжения сети равно 220·√2=311(B). Импульсное значение тока в цепи, если условно пренебречь конденсатором С ф, может достигать



Соответственно, стабилитрон VD2 должен надежно выдерживать этот импульсный ток при случайном отключении нагрузки. Не следует забывать и о возможных перегрузках по напряжению в осветительной сети, составляющих 20...25% от номинала, и рассчитывать ток, проходящий через стабилитрон при отключенной нагрузке с учетом поправочного коэффициента 1,2...1,25.

Если нет мощного стабилитрона

Когда стабилитрона подходящей мощности нет, его полноценно удается заменить диодно-транзисторным аналогом. Но тогда БТБП следует строить по схеме, показанной на рис. 2. Здесь ток, протекающий через стабилитрон VD2, уменьшается пропорционально статическому коэффициенту передачи тока базы мощного n-p-n транзистора VT1. Напряжение UCT аналога будет примерно на 0,7В превышать U ст самого маломощного стабилитрона VD2, если транзистор VT1 кремниевый, или на 0,3В - если он германиевый.

Здесь применим и транзистор структуры p-n-p. Однако тогда используют схему, показанную на рис. 3.

Расчет однополупериодного блока

Наряду с двухполупериодным выпрямителем в БТБП иногда применяют и простейший однополупериодный (рис. 4). В таком случае его нагрузка R н питается лишь положительными полупериодами переменного тока, а отрицательные проходят через диод VD3, минуя нагрузку. Поэтому средний ток I ср через диод VD1 будет вдвое меньше. Значит при расчете блока вместо Х с следует брать в 2 раза большее сопротивление, равное



а средний ток при замкнутой накоротко нагрузке будет равен 9,9·πС гас =31,1 С гас. Дальнейший расчет такого варианта БПТП ведут совершенно аналогично предыдущим случаям.

Расчет напряжения на гасящем конденсаторе

Принято считать, что при напряжении сети 220В номинальное напряжение гасящего конденсатора С гас должно быть не менее 400В, то есть примерно с 30-процентным запасом по отношению к амплитудному сетевому, поскольку 1,3·311=404(В). Однако в некоторых наиболее ответственных случаях его номинальное напряжение должно быть 500 и даже 600В.

И еще. Подбирая подходящий конденсатор С гас, следует учитывать, что применять в БТБП конденсаторы типа МБМ, МБПО, МБГП, МБГЦ-1, МБГЦ-2 нельзя, так как они не рассчитаны на работу в цепях переменного тока с амплитудным значением напряжения, превышающим 150В.

Наиболее надежно в БТБП работают конденсаторы МБГЧ-1, МБГЧ-2 на номинальное напряжение 500В (от старых стиральных машин, люминесцентных светильников и т.п.) или КБГ-МН, КБГ-МП, но на номинальное напряжение 1000В.

Фильтрующий конденсатор

Емкость Фильтрующего конденсатора С ф аналитическим путем рассчитать затруднительно. Поэтому ее подбирают экспериментально. Ориентировочно следует считать, что на каждый миллиампер среднего потребляемого тока требуется брать как минимум 3...10 мкФ этой емкости, если выпрямитель БТБП двухполупериодный, или 10...30 мкФ, если он однополупериодный.

Номинальное напряжение используемого оксидного конденсатора С ф должно быть не менее U ст ·А если стабилитрона в БТБП нет, а нагрузка включена постоянно, номинальное напряжение фильтрующего конденсатора должно превышать значение:


Если нагрузка не может быть включена постоянно, а стабилитрон отсутствует, номинальное напряжение фильтрующего конденсатора должно составлять более 450В, что вряд ли приемлемо из-за больших размеров конденсатора С ф. Кстати, в этом случае снова подключать нагрузку следовало бы лишь после отключения БТБП от сети.

И это еще не все

Любой из возможных вариантов БТБП желательно дополнить еще двумя вспомогательными резисторами. Один из них, сопротивление которого может быть в пределах 300кОм...1МОм, включают параллельно конденсатору С гас. Этот резистор нужен для ускорения разрядки конденсатора С гас после отключения устройства от сети. Другой - балластный - сопротивлением 10...51 Ом включают в разрыв одного из сетевых проводов, например, последовательно с конденсатором С гас. Этот резистор будет ограничивать ток через диоды моста VD1 в момент подключения БТБП к сети. Мощность рассеяния обоих резисторов должна быть не менее 0,5 Вт, что нужно для гарантии от возможных поверхностных пробоев этих резисторов высоким напряжением. За счет балластного резистора стабилитрон будет нагружен несколько меньше, но вот средняя потребляемая БТБП мощность заметно увеличится.

Какие взять диоды

Функцию двухполупериодного выпрямителя БТБП по схемам на рис. 1...3 могут выполнять диодные сборки серии КЦ405 или КЦ402 с буквенными индексами Ж или И, если средний ток не превышает 600 мА, либо с индексами А, Б, если значение тока достигает 1 А. Пригодны также четыре отдельных диода, включенных по схеме моста, например серий КД105 с индексами Б, В или Г, Д226 Б или В - до 300 мА, КД209 А, Б или В - до 500...700 мА, КД226 В, Г или Д - до 1,7 А.

Диоды VD1 и VD3 в БТБП по схеме на рис. 4 могут быть любыми из перечисленных выше. Допустимо также использовать две диодные сборки КД205К В,Г или Д в расчете на ток до 300 мА либо КД205 А,В,Ж или И - до 500 мА.

И последнее. Бестрансформаторный блок питания, а также аппаратура, подключенная к нему, подключены в сеть переменного тока непосредственно! Поэтому они должны быть надежно за-изолированы снаружи, скажем, размещены в пластмассовом корпусе. Кроме того, категорически запрещается "заземлять" какой-либо из их выводов, а также вскрывать корпус при включенном устройстве.

Предлагаемая методика расчета БПТП опробована автором на практике в течение ряда лет. Весь расчет ведется, исходя из того, что БПТП - это по существу параметрический стабилизатор напряжения, в котором роль ограничителя тока выполняет гасящий конденсатор.

Журнал «САМ» №5, 1998 год

© ebergardt.ru, 2024
Строим вместе